Ragas项目中的评估函数Bug分析与解决方案
2025-05-26 19:57:40作者:温艾琴Wonderful
问题背景
在Ragas项目(一个用于评估AI生成内容质量的工具)的使用过程中,发现了一个与评估函数相关的Bug。该Bug主要出现在使用VertexAI的gemini-pro模型进行内容评估时,会导致评估结果与问题不匹配的情况。
问题现象
当用户对一个包含51个问题的数据集进行评估时,发现评估结果存在以下异常现象:
- 批量评估时,部分问题的评估结果出现NaN值,而其他问题则获得正常评分
- 单独评估那些在批量评估中出现NaN的问题时,却能获得正常评分
- 评估结果的顺序似乎被打乱,导致评分与问题不匹配
根本原因分析
经过深入调查,发现问题源于VertexAI模型的内容安全过滤机制。当模型检测到可能有害的内容(如仇恨言论、骚扰内容等)时,会抛出ResponseValidationError异常。这个异常处理方式导致了以下连锁反应:
- 评估过程中的并行处理机制因异常而中断
- 评估结果的顺序被打乱
- 部分评估结果未能正确赋值,导致NaN出现
技术细节
VertexAI模型内置了严格的内容安全过滤机制,会对以下类型的内容进行拦截:
- 仇恨言论
- 危险内容
- 骚扰内容
- 性暗示内容
当模型检测到这些内容时,会终止响应并抛出异常。在Ragas的评估流程中,这种异常处理方式干扰了评估结果的正确分配。
解决方案
目前可行的解决方案是创建一个自定义的VertexAI包装类,覆盖默认的安全设置:
from langchain_google_vertexai import VertexAI as VertexAI_
from vertexai.generative_models import generative_models
class BaseWrapper:
@property
def safety_settings(self):
return {
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_UNSPECIFIED: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
}
class VertexAI(VertexAI_, BaseWrapper):
def generate_prompt(self, *args, **kwargs):
return super().generate_prompt(*args, **kwargs, safety_settings=self.safety_settings)
这个解决方案通过以下方式解决问题:
- 禁用所有内容安全过滤
- 确保所有评估请求都能完成
- 保持评估结果的顺序一致性
注意事项
虽然这个解决方案能够解决评估结果错位的问题,但也意味着放弃了模型内置的内容安全保护。在实际应用中,开发者需要权衡评估准确性和内容安全性的需求。
未来改进方向
Ragas项目团队已经表示,未来的版本将引入自一致性(self-consistency)机制来提高评估指标的稳定性。这将有助于解决类似的问题,同时保持对有害内容的适当过滤。
对于开发者而言,在Ragas官方修复此问题之前,可以采取以下措施:
- 使用上述包装类解决方案
- 对数据集进行预处理,移除可能触发安全过滤的内容
- 分批评估数据集,减少并行处理带来的问题
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210