Ragas项目中的评估函数Bug分析与解决方案
2025-05-26 19:57:40作者:温艾琴Wonderful
问题背景
在Ragas项目(一个用于评估AI生成内容质量的工具)的使用过程中,发现了一个与评估函数相关的Bug。该Bug主要出现在使用VertexAI的gemini-pro模型进行内容评估时,会导致评估结果与问题不匹配的情况。
问题现象
当用户对一个包含51个问题的数据集进行评估时,发现评估结果存在以下异常现象:
- 批量评估时,部分问题的评估结果出现NaN值,而其他问题则获得正常评分
- 单独评估那些在批量评估中出现NaN的问题时,却能获得正常评分
- 评估结果的顺序似乎被打乱,导致评分与问题不匹配
根本原因分析
经过深入调查,发现问题源于VertexAI模型的内容安全过滤机制。当模型检测到可能有害的内容(如仇恨言论、骚扰内容等)时,会抛出ResponseValidationError异常。这个异常处理方式导致了以下连锁反应:
- 评估过程中的并行处理机制因异常而中断
- 评估结果的顺序被打乱
- 部分评估结果未能正确赋值,导致NaN出现
技术细节
VertexAI模型内置了严格的内容安全过滤机制,会对以下类型的内容进行拦截:
- 仇恨言论
- 危险内容
- 骚扰内容
- 性暗示内容
当模型检测到这些内容时,会终止响应并抛出异常。在Ragas的评估流程中,这种异常处理方式干扰了评估结果的正确分配。
解决方案
目前可行的解决方案是创建一个自定义的VertexAI包装类,覆盖默认的安全设置:
from langchain_google_vertexai import VertexAI as VertexAI_
from vertexai.generative_models import generative_models
class BaseWrapper:
@property
def safety_settings(self):
return {
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_UNSPECIFIED: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_NONE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
}
class VertexAI(VertexAI_, BaseWrapper):
def generate_prompt(self, *args, **kwargs):
return super().generate_prompt(*args, **kwargs, safety_settings=self.safety_settings)
这个解决方案通过以下方式解决问题:
- 禁用所有内容安全过滤
- 确保所有评估请求都能完成
- 保持评估结果的顺序一致性
注意事项
虽然这个解决方案能够解决评估结果错位的问题,但也意味着放弃了模型内置的内容安全保护。在实际应用中,开发者需要权衡评估准确性和内容安全性的需求。
未来改进方向
Ragas项目团队已经表示,未来的版本将引入自一致性(self-consistency)机制来提高评估指标的稳定性。这将有助于解决类似的问题,同时保持对有害内容的适当过滤。
对于开发者而言,在Ragas官方修复此问题之前,可以采取以下措施:
- 使用上述包装类解决方案
- 对数据集进行预处理,移除可能触发安全过滤的内容
- 分批评估数据集,减少并行处理带来的问题
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217