Ragas项目中使用ChatVertexAI模型时遇到的评估函数问题解析
2025-05-26 19:44:08作者:廉皓灿Ida
问题背景
在Ragas项目(一个用于评估RAG系统的开源框架)中,开发者在使用ChatVertexAI模型进行评测时遇到了一个技术障碍。当尝试使用ChatVertexAI类作为语言模型传递给Ragas的evaluate函数时,系统会抛出"AttributeError: 'ChatVertexAI' object has no attribute 'set_run_config'"的错误。
技术细节分析
这个问题的根源在于Ragas框架和Langchain的ChatVertexAI实现之间的接口不兼容。Ragas的评估函数期望传入的语言模型对象具有set_run_config方法,而ChatVertexAI类并未实现这一方法。
具体来说,当执行以下代码时会出现问题:
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-1.5-pro-preview-0409")
result = evaluate(dataset, metrics=metrics, llm=llm)
解决方案
社区成员发现可以通过使用LangchainLLMWrapper包装器来解决这个问题。这个包装器为Langchain的LLM类提供了Ragas框架所需的接口兼容性。
正确的实现方式如下:
from ragas.llms import LangchainLLMWrapper
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro")
ragas_vertexai_llm = LangchainLLMWrapper(llm)
evaluate_result = evaluate(
dataset=evaluate_dataset,
metrics=metrics,
llm=ragas_vertexai_llm,
)
技术原理
LangchainLLMWrapper实际上是一个适配器模式(Adapter Pattern)的实现,它在不修改原有ChatVertexAI类的情况下,为其添加了Ragas框架所需的方法和属性。这种设计模式在集成不同库或框架时非常有用,可以最小化代码修改并保持系统的灵活性。
最佳实践建议
- 当在Ragas框架中使用任何Langchain提供的LLM类时,都建议使用LangchainLLMWrapper进行包装
- 对于Google VertexAI系列模型,确保使用最新版本的SDK
- 在设置模型参数时,注意不同模型可能有不同的参数要求和限制
- 对于生产环境使用,建议先在小规模数据集上测试评估流程
总结
这个问题展示了在集成不同AI框架时可能遇到的接口兼容性问题。通过使用适配器模式,开发者可以灵活地桥接不同框架之间的差异,而无需修改框架本身的代码。Ragas项目提供的LangchainLLMWrapper正是为解决这类问题而设计的实用工具。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1