深度学习在小分子质谱分析中的应用
2024-09-26 20:03:59作者:盛欣凯Ernestine
本教程将引导您了解并使用deep-molecular-massspec这一开源项目,它利用深度学习技术预测有机分子的电子电离质谱图。该项目通过模拟实验化学家当前使用的库匹配任务来评估性能表现。
1. 项目目录结构及介绍
deep-molecular-massspec/
|-- examples/ # 示例文件夹,包括用于测试的数据文件
| |-- pentachlorobenzene.sdf
|-- testdata/ # 测试数据集
|-- training_splits/ # 训练、验证和测试集的分子数据划分
|-- .gitignore # Git忽略文件列表
|-- CONTRIBUTING.md # 贡献指南
|-- LICENSE # 许可证文件(Apache-2.0)
|-- Model_Retrain_Quickstart.md # 重新训练模型快速入门指南
|-- README.md # 项目简介和快速操作指南
|-- __init__.py # 初始化脚本
|-- dataset_setup_constants.py # 数据集设置常量
|-- ... # 其他Python源代码文件,涉及模型训练、预测等核心逻辑
examples/包含了示例分子文件,如.sdf格式的分子结构。testdata/和training_splits/提供了用于训练和测试的数据分割。- 主要的脚本和模块分布在根目录下,如
make_spectra_prediction.py用于生成预测谱图。
2. 项目的启动文件介绍
预测模型的运行
主要的启动文件是make_spectra_prediction.py。使用这个脚本可以基于已训练好的模型对新的分子结构进行质谱预测。运行前需要下载预训练权重,并指定输入分子文件路径、输出路径以及权重存放目录。例如:
$ MODEL_WEIGHTS_DIR=/path/to/your/model_weights
$ mkdir -p $MODEL_WEIGHTS_DIR
$ curl -o $MODEL_WEIGHTS_DIR/massspec_weights.zip "https://storage.googleapis.com/deep-molecular-massspec/massspec_weights/massspec_weights.zip"
$ unzip $MODEL_WEIGHTS_DIR/massspec_weights.zip -d $MODEL_WEIGHTS_DIR
$ python make_spectra_prediction.py \
--input_file=examples/pentachlorobenzene.sdf \
--output_file=/tmp/annotated.sdf \
--weights_dir=$MODEL_WEIGHTS_DIR/massspec_weights
3. 项目的配置文件介绍
此项目并未明确提供一个传统的配置文件,如.yaml或.ini形式。然而,重要配置通常是通过命令行参数传递给脚本的,例如在上述例子中,通过--input_file, --output_file, 和 --weights_dir 参数来指定必要的信息。对于更为复杂的配置需求,比如调整模型训练时的超参数,可能需要直接修改Python源码中的默认值或通过环境变量实现。
项目中的关键配置大多位于各个功能脚本内部,比如dataset_setup_constants.py中可能包含了数据处理的静态配置项。因此,在深入使用或扩展项目时,理解这些脚本中的常量定义和参数设定至关重要。
通过遵循以上指导,您可以顺利地开始利用deep-molecular-massspec进行小分子的质谱预测工作。确保您的开发环境中已经正确安装所有必需的依赖包,如TensorFlow、RDKit等,以保证项目正常运行。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
388
仓颉编程语言运行时与标准库。
Cangjie
130
401
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205