深度学习在小分子质谱分析中的应用
2024-09-26 16:32:00作者:盛欣凯Ernestine
本教程将引导您了解并使用deep-molecular-massspec这一开源项目,它利用深度学习技术预测有机分子的电子电离质谱图。该项目通过模拟实验化学家当前使用的库匹配任务来评估性能表现。
1. 项目目录结构及介绍
deep-molecular-massspec/
|-- examples/ # 示例文件夹,包括用于测试的数据文件
| |-- pentachlorobenzene.sdf
|-- testdata/ # 测试数据集
|-- training_splits/ # 训练、验证和测试集的分子数据划分
|-- .gitignore # Git忽略文件列表
|-- CONTRIBUTING.md # 贡献指南
|-- LICENSE # 许可证文件(Apache-2.0)
|-- Model_Retrain_Quickstart.md # 重新训练模型快速入门指南
|-- README.md # 项目简介和快速操作指南
|-- __init__.py # 初始化脚本
|-- dataset_setup_constants.py # 数据集设置常量
|-- ... # 其他Python源代码文件,涉及模型训练、预测等核心逻辑
examples/包含了示例分子文件,如.sdf格式的分子结构。testdata/和training_splits/提供了用于训练和测试的数据分割。- 主要的脚本和模块分布在根目录下,如
make_spectra_prediction.py用于生成预测谱图。
2. 项目的启动文件介绍
预测模型的运行
主要的启动文件是make_spectra_prediction.py。使用这个脚本可以基于已训练好的模型对新的分子结构进行质谱预测。运行前需要下载预训练权重,并指定输入分子文件路径、输出路径以及权重存放目录。例如:
$ MODEL_WEIGHTS_DIR=/path/to/your/model_weights
$ mkdir -p $MODEL_WEIGHTS_DIR
$ curl -o $MODEL_WEIGHTS_DIR/massspec_weights.zip "https://storage.googleapis.com/deep-molecular-massspec/massspec_weights/massspec_weights.zip"
$ unzip $MODEL_WEIGHTS_DIR/massspec_weights.zip -d $MODEL_WEIGHTS_DIR
$ python make_spectra_prediction.py \
--input_file=examples/pentachlorobenzene.sdf \
--output_file=/tmp/annotated.sdf \
--weights_dir=$MODEL_WEIGHTS_DIR/massspec_weights
3. 项目的配置文件介绍
此项目并未明确提供一个传统的配置文件,如.yaml或.ini形式。然而,重要配置通常是通过命令行参数传递给脚本的,例如在上述例子中,通过--input_file, --output_file, 和 --weights_dir 参数来指定必要的信息。对于更为复杂的配置需求,比如调整模型训练时的超参数,可能需要直接修改Python源码中的默认值或通过环境变量实现。
项目中的关键配置大多位于各个功能脚本内部,比如dataset_setup_constants.py中可能包含了数据处理的静态配置项。因此,在深入使用或扩展项目时,理解这些脚本中的常量定义和参数设定至关重要。
通过遵循以上指导,您可以顺利地开始利用deep-molecular-massspec进行小分子的质谱预测工作。确保您的开发环境中已经正确安装所有必需的依赖包,如TensorFlow、RDKit等,以保证项目正常运行。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.71 K
暂无简介
Dart
634
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
272
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
196
214