首页
/ Deep Molecular Massspec 项目使用指南

Deep Molecular Massspec 项目使用指南

2024-09-19 23:32:03作者:牧宁李

1. 项目介绍

Deep Molecular Massspec 是一个利用深度学习技术预测小分子质谱图的项目。该项目通过应用深度学习技术到各种分子表示上,来预测分子的质谱图。项目的主要目标是评估自定义库匹配任务中的性能行为,通过将分子的质谱图与标记的质谱图库进行匹配来识别分子。

2. 项目快速启动

2.1 环境准备

建议使用 Anaconda 并创建一个 Python 3.6 环境来安装所需的包。以下是安装步骤:

conda create -n deep-molecular-massspec python=3.6
conda activate deep-molecular-massspec
conda install tensorflow=1.13.2 rdkit matplotlib
pip install absl-py

2.2 下载模型权重

创建一个目录并下载模型权重:

MODEL_WEIGHTS_DIR=/home/path/to/model
mkdir $MODEL_WEIGHTS_DIR
cd $MODEL_WEIGHTS_DIR
curl -o https://storage.googleapis.com/deep-molecular-massspec/massspec_weights/massspec_weights.zip
unzip massspec_weights.zip

2.3 运行模型预测

使用以下命令对示例分子进行预测:

python make_spectra_prediction.py \
  --input_file=examples/pentachlorobenzene.sdf \
  --output_file=/tmp/annotated.sdf \
  --weights_dir=$MODEL_WEIGHTS_DIR/massspec_weights

3. 应用案例和最佳实践

3.1 应用案例

Deep Molecular Massspec 项目可以应用于化学和生物学领域,特别是在代谢组学和脂质组学研究中。通过预测分子的质谱图,研究人员可以更快速地识别和注释未知化合物,从而加速新药发现和生物标志物的鉴定。

3.2 最佳实践

  • 数据准备:确保输入数据格式正确,特别是 SDF 文件的格式。
  • 模型训练:如果需要,可以根据自己的数据集重新训练模型,以提高预测准确性。
  • 结果分析:使用生成的质谱图进行进一步的化学信息学分析,如结构鉴定和分子性质预测。

4. 典型生态项目

4.1 IDSL_MINT

IDSL_MINT 是一个深度学习框架,用于从质谱数据中预测分子指纹。它允许用户利用 transformer 模型的强大功能来处理质谱数据,类似于大型语言模型。IDSL_MINT 可以通过用户提供的参考质谱库来训练模型,并支持自定义分子指纹描述符。

4.2 CSI:FingerID

CSI:FingerID 是一个用于从电子电离质谱数据中预测分子指纹的工具。它通过训练的机器学习模型直接从质谱数据中预测分子结构,无需搜索质谱库。

4.3 Spec2Vec

Spec2Vec 是一个用于创建质谱嵌入的工具,它可以将质谱数据转换为嵌入向量,从而可以用于搜索质谱库或化学结构库。

通过结合这些生态项目,研究人员可以构建一个完整的质谱数据处理和分析流程,从数据预处理到最终的分子结构鉴定。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8