Deep Molecular Massspec 项目使用指南
2024-09-19 20:36:22作者:牧宁李
1. 项目介绍
Deep Molecular Massspec 是一个利用深度学习技术预测小分子质谱图的项目。该项目通过应用深度学习技术到各种分子表示上,来预测分子的质谱图。项目的主要目标是评估自定义库匹配任务中的性能行为,通过将分子的质谱图与标记的质谱图库进行匹配来识别分子。
2. 项目快速启动
2.1 环境准备
建议使用 Anaconda 并创建一个 Python 3.6 环境来安装所需的包。以下是安装步骤:
conda create -n deep-molecular-massspec python=3.6
conda activate deep-molecular-massspec
conda install tensorflow=1.13.2 rdkit matplotlib
pip install absl-py
2.2 下载模型权重
创建一个目录并下载模型权重:
MODEL_WEIGHTS_DIR=/home/path/to/model
mkdir $MODEL_WEIGHTS_DIR
cd $MODEL_WEIGHTS_DIR
curl -o https://storage.googleapis.com/deep-molecular-massspec/massspec_weights/massspec_weights.zip
unzip massspec_weights.zip
2.3 运行模型预测
使用以下命令对示例分子进行预测:
python make_spectra_prediction.py \
--input_file=examples/pentachlorobenzene.sdf \
--output_file=/tmp/annotated.sdf \
--weights_dir=$MODEL_WEIGHTS_DIR/massspec_weights
3. 应用案例和最佳实践
3.1 应用案例
Deep Molecular Massspec 项目可以应用于化学和生物学领域,特别是在代谢组学和脂质组学研究中。通过预测分子的质谱图,研究人员可以更快速地识别和注释未知化合物,从而加速新药发现和生物标志物的鉴定。
3.2 最佳实践
- 数据准备:确保输入数据格式正确,特别是 SDF 文件的格式。
- 模型训练:如果需要,可以根据自己的数据集重新训练模型,以提高预测准确性。
- 结果分析:使用生成的质谱图进行进一步的化学信息学分析,如结构鉴定和分子性质预测。
4. 典型生态项目
4.1 IDSL_MINT
IDSL_MINT 是一个深度学习框架,用于从质谱数据中预测分子指纹。它允许用户利用 transformer 模型的强大功能来处理质谱数据,类似于大型语言模型。IDSL_MINT 可以通过用户提供的参考质谱库来训练模型,并支持自定义分子指纹描述符。
4.2 CSI:FingerID
CSI:FingerID 是一个用于从电子电离质谱数据中预测分子指纹的工具。它通过训练的机器学习模型直接从质谱数据中预测分子结构,无需搜索质谱库。
4.3 Spec2Vec
Spec2Vec 是一个用于创建质谱嵌入的工具,它可以将质谱数据转换为嵌入向量,从而可以用于搜索质谱库或化学结构库。
通过结合这些生态项目,研究人员可以构建一个完整的质谱数据处理和分析流程,从数据预处理到最终的分子结构鉴定。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19