Deep Molecular Massspec 项目使用指南
2024-09-19 01:34:35作者:牧宁李
1. 项目介绍
Deep Molecular Massspec 是一个利用深度学习技术预测小分子质谱图的项目。该项目通过应用深度学习技术到各种分子表示上,来预测分子的质谱图。项目的主要目标是评估自定义库匹配任务中的性能行为,通过将分子的质谱图与标记的质谱图库进行匹配来识别分子。
2. 项目快速启动
2.1 环境准备
建议使用 Anaconda 并创建一个 Python 3.6 环境来安装所需的包。以下是安装步骤:
conda create -n deep-molecular-massspec python=3.6
conda activate deep-molecular-massspec
conda install tensorflow=1.13.2 rdkit matplotlib
pip install absl-py
2.2 下载模型权重
创建一个目录并下载模型权重:
MODEL_WEIGHTS_DIR=/home/path/to/model
mkdir $MODEL_WEIGHTS_DIR
cd $MODEL_WEIGHTS_DIR
curl -o https://storage.googleapis.com/deep-molecular-massspec/massspec_weights/massspec_weights.zip
unzip massspec_weights.zip
2.3 运行模型预测
使用以下命令对示例分子进行预测:
python make_spectra_prediction.py \
--input_file=examples/pentachlorobenzene.sdf \
--output_file=/tmp/annotated.sdf \
--weights_dir=$MODEL_WEIGHTS_DIR/massspec_weights
3. 应用案例和最佳实践
3.1 应用案例
Deep Molecular Massspec 项目可以应用于化学和生物学领域,特别是在代谢组学和脂质组学研究中。通过预测分子的质谱图,研究人员可以更快速地识别和注释未知化合物,从而加速新药发现和生物标志物的鉴定。
3.2 最佳实践
- 数据准备:确保输入数据格式正确,特别是 SDF 文件的格式。
- 模型训练:如果需要,可以根据自己的数据集重新训练模型,以提高预测准确性。
- 结果分析:使用生成的质谱图进行进一步的化学信息学分析,如结构鉴定和分子性质预测。
4. 典型生态项目
4.1 IDSL_MINT
IDSL_MINT 是一个深度学习框架,用于从质谱数据中预测分子指纹。它允许用户利用 transformer 模型的强大功能来处理质谱数据,类似于大型语言模型。IDSL_MINT 可以通过用户提供的参考质谱库来训练模型,并支持自定义分子指纹描述符。
4.2 CSI:FingerID
CSI:FingerID 是一个用于从电子电离质谱数据中预测分子指纹的工具。它通过训练的机器学习模型直接从质谱数据中预测分子结构,无需搜索质谱库。
4.3 Spec2Vec
Spec2Vec 是一个用于创建质谱嵌入的工具,它可以将质谱数据转换为嵌入向量,从而可以用于搜索质谱库或化学结构库。
通过结合这些生态项目,研究人员可以构建一个完整的质谱数据处理和分析流程,从数据预处理到最终的分子结构鉴定。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4