推荐使用TabDDPM:表格数据的扩散模型建模
2024-05-21 00:09:27作者:舒璇辛Bertina
1、项目介绍
在处理和理解大量结构化数据,尤其是表格数据时,TabDDPM提供了一种新的解决方案。这个开源项目源于我们的论文《TabDDPM:用扩散模型建模表格数据》(论文链接)。TabDDPM通过引入创新的扩散模型,实现了对复杂表格数据的高效建模,有助于提升数据合成和隐私保护的能力。
2、项目技术分析
TabDDPM的核心是采用扩散模型来处理表格数据,这是一种逐步从噪声中恢复原始数据序列的方法。这种模型能够捕获表格数据的内在结构,并且可以进行精确的数据合成。项目提供了详细的配置文件,允许用户调整超参数以优化模型性能,同时包含了训练、采样和评估模型的一系列脚本,便于研究人员和开发者使用。
3、项目及技术应用场景
TabDDPM在多个领域有广泛的应用潜力:
- 数据增强:通过生成与真实数据类似的样本,可以提高机器学习模型的训练效果。
- 隐私保护:生成合成数据,可以在不泄露敏感信息的情况下用于数据分析。
- 数据不平衡问题:对于小样本或稀有类别的数据,可以通过该模型产生更多的例子进行补充。
- 算法评估:作为对比实验的基础,测试新算法在不同数据集上的表现。
4、项目特点
- 易用性:项目提供了详细的安装和运行指南,包括Conda环境设置和数据预处理步骤,使得实验复现简单快捷。
- 灵活性:用户可以选择不同的评估模型(如CatBoost或MLP)以及调优选项,适应各种需求。
- 可扩展性:项目结构清晰,易于整合新的模型和数据集。
- 高效性能:基于PyTorch实现,能在GPU上快速训练和采样。
总的来说,TabDDPM是一个强大的工具,为处理和建模表格数据开辟了新的道路。如果你需要在数据科学或机器学习项目中处理结构化的表格数据,我们强烈推荐尝试TabDDPM并利用其优势来提升你的工作效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869