data-selfie 的项目扩展与二次开发
2025-07-05 04:24:54作者:柯茵沙
项目的基础介绍
data-selfie 是一个开源的浏览器扩展,旨在帮助用户追踪自己在 Facebook 上的活动并分析个人数据。该项目通过收集用户在 Facebook 上的互动数据,提供了一种监控和分析个人隐私信息的方式。用户可以通过这款工具了解自己的网络行为习惯,以及这些行为可能反映出的个人信息。
项目的核心功能
data-selfie 的核心功能包括:
- 实时追踪用户在 Facebook 上的活动,如点赞、评论、分享等。
- 分析用户的行为模式,并生成相应的数据报告。
- 提供一个本地数据库,用于存储和分析用户数据,而不将数据发送到外部服务器。
项目使用了哪些框架或库?
该项目主要使用以下框架和库:
- JavaScript:用于编写扩展的主要脚本语言。
- Chrome API:利用 Chrome 浏览器的扩展 API 开发功能。
- Webpack:用于打包扩展的资源和脚本。
- IndexedDB:用于在浏览器中存储用户数据。
项目的代码目录及介绍
项目的代码目录结构大致如下:
data-selfie/
├── build/ # 构建后的文件目录
├── src/ # 源代码目录
│ ├── background/ # 后台脚本目录
│ ├── content/ # 内容脚本目录
│ ├── images/ # 图片资源目录
│ ├── popup/ # 弹窗界面目录
│ └── utils/ # 工具函数目录
├── .gitignore # Git 忽略文件列表
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
├── package.json # 项目配置文件
└── webpack.config.js # Webpack 配置文件
对项目进行扩展或者二次开发的方向
- 增强数据分析功能:可以增加更复杂的数据分析算法,比如情感分析、用户行为预测等。
- 扩展数据来源:除了 Facebook,还可以考虑支持其他社交媒体平台的监控。
- 用户界面优化:改进用户界面,使其更加直观易用,支持响应式设计以适应不同设备。
- 数据安全性提升:增加加密功能,确保用户数据的安全性。
- 多语言支持:为项目添加多语言支持,使其可以被不同国家的用户使用。
- 社区共建:建立社区,鼓励更多开发者参与,共同完善和扩展项目功能。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中关于HTML可访问性讲座的字幕修正2 freeCodeCamp Cafe Menu项目中的HTML void元素解析3 freeCodeCamp 个人资料页时间线分页按钮优化方案4 freeCodeCamp计算机基础测验题目优化分析5 freeCodeCamp全栈开发课程中Navbar组件构建的优化建议6 freeCodeCamp全栈开发课程中回文检测器项目的正则表达式教学优化7 freeCodeCamp平台证书查看功能异常的技术分析8 freeCodeCamp 前端开发实验室:排列生成器代码规范优化9 freeCodeCamp课程中sr-only类与position: absolute的正确使用10 freeCodeCamp国际化组件中未翻译内容的技术分析
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.35 K

仓颉编译器源码及 cjdb 调试工具。
C++
114
82

暂无简介
Dart
538
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
108

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

仓颉编程语言测试用例。
Cangjie
34
65

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
131
657