PyTorch Vision中draw_keypoints()函数新增关键点可见性参数的技术解析
在计算机视觉领域,关键点检测是一项基础而重要的任务,广泛应用于人体姿态估计、面部识别等场景。PyTorch Vision库中的draw_keypoints()函数作为可视化工具,能够将检测到的关键点及其连接关系直观地展示在图像上。然而,在实际应用中,我们经常会遇到部分关键点不可见或未被检测到的情况,这给可视化带来了挑战。
原有函数的局限性
传统的draw_keypoints()函数在处理不可见关键点时存在明显不足。当某些关键点未被检测到或不可见时,开发者通常会将它们的坐标设置为(0,0)或图像原点。这种情况下,函数仍会绘制这些点并尝试连接它们,导致可视化结果中出现从实际人体位置到图像左上角的异常连线,严重影响可视化效果。
以一个滑板运动员的姿态估计为例,当左眼、左耳和左髋关节未被检测到时,原始函数会在这些位置与图像原点之间绘制连线,产生明显的视觉干扰。对于更复杂的骨架结构(如Halpe-FullBody的136个关键点或COCO-WholeBody的133个关键点),这种问题会更加严重。
技术解决方案
为了解决这一问题,PyTorch Vision库新增了visibility参数,允许开发者显式指定哪些关键点是可见的。该参数接受一个布尔张量,形状与关键点张量相匹配,用于指示每个关键点的可见状态。
具体实现上,当visibility参数被设置为False时,函数将:
- 跳过该关键点的绘制
- 自动忽略所有涉及该关键点的骨架连接
- 保持其他可见关键点的正常绘制和连接
这种设计既保持了函数的易用性,又提供了足够的灵活性。开发者可以根据实际需求,为每个实例单独设置可见性,或者为整批数据统一设置。
实现细节与设计考量
在技术实现过程中,开发团队考虑了多种设计方案:
-
显式参数与隐式检测的权衡:最初考虑通过检测关键点坐标的第三维(常见于模型输出)自动判断可见性,但这种方法存在阈值不确定性问题。不同模型可能使用不同的置信度表示方式,显式参数让开发者可以自由决定可见性判断标准。
-
内存效率:使用独立的布尔张量作为可见性参数,相比从浮点型置信度转换,可以显著减少内存占用(1位 vs 32位)。
-
扩展性:独立参数设计为未来支持3D关键点可视化预留了空间,而不会破坏现有接口的兼容性。
-
多实例支持:参数设计支持批量处理,可以同时为多个实例设置不同的可见性模式,满足实际应用中对多人物姿态估计的需求。
实际应用示例
在实际应用中,开发者可以这样使用新功能:
# 假设keypoints是模型输出的N×K×3张量,最后一维包含x,y坐标和置信度
keypoints = model(image)
positions = keypoints[..., :2] # 提取位置信息
confidences = keypoints[..., 2] # 提取置信度
visibility = confidences > 0.5 # 设置自定义阈值
# 绘制带可见性控制的关键点
drawn_image = draw_keypoints(
image,
positions,
visibility=visibility,
connectivity=skeleton_definition
)
这种方法特别适用于以下场景:
- 部分遮挡情况下的姿态估计
- 低质量图像中的关键点检测
- 需要突出显示高置信度关键点的调试场景
- 多人场景中不同人物可能有不同可见关键点的情况
总结
PyTorch Vision库对draw_keypoints()函数的这一增强,显著提升了关键点检测结果的可视化质量。通过引入显式的可见性控制参数,开发者可以更准确地表达模型的输出,避免无效或误导性的可视化结果。这一改进不仅提高了调试效率,也为最终用户呈现了更专业、更可信的视觉输出,是计算机视觉工具链中一个看似小巧但实际价值重大的进步。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00