DeepLabCut Pytorch版本训练中NaN值导致的关键点绘制错误分析
2025-06-09 18:55:40作者:仰钰奇
问题背景
在DeepLabCut Pytorch版本(DLC3.0)的模型训练过程中,当系统尝试将关键点可视化并记录到WandB日志时,可能会遇到一个由NaN值引发的错误。这个错误会导致训练过程中断,影响模型开发流程。
错误现象
错误的核心表现为在绘制关键点椭圆时出现的"x1必须大于或等于x0"的ValueError。具体来说,当PIL库的ImageDraw模块尝试绘制椭圆时,发现传入的x1坐标值小于x0坐标值,违反了绘图的基本规则。
根本原因分析
经过深入排查,发现问题的根源在于:
- 当某些关键点被标记为不可见或缺失时,系统会使用NaN值来表示这些关键点
- 在可视化阶段,这些NaN值没有被正确处理
- NaN值被传递到绘图函数中,导致坐标计算异常
- 最终触发了PIL库的坐标验证错误
技术细节
在DeepLabCut的logger.py文件中,_prepare_image方法负责准备要记录到WandB的图像。该方法会:
- 对图像进行去归一化处理(如果配置要求)
- 转换图像数据类型为uint8
- 绘制关键点和边界框(如果存在)
问题主要出现在关键点绘制阶段。当关键点张量中包含NaN值时,torchvision的draw_keypoints函数无法正确处理这些异常值,最终导致PIL绘图错误。
解决方案
目前有两种解决方案:
临时解决方案
修改训练配置文件,禁用WandB的图像记录功能:
logger:
type: WandbLogger
image_log_interval: null
这种方法简单有效,但会牺牲关键点可视化功能。
长期解决方案
在logger.py的_prepare_image方法中添加NaN值处理逻辑:
if keypoints is not None and len(keypoints) > 0:
assert len(keypoints.shape) == 3
# 将包含NaN的关键点设置为0
keypoints[torch.isnan(keypoints).any(dim=2)] = 0
image = draw_keypoints(
image, keypoints=keypoints[..., :2], colors="red", radius=5
)
这种方法能够保留可视化功能,同时避免NaN值导致的错误。
最佳实践建议
- 在训练前检查数据集,确保没有异常的关键点标注
- 考虑在数据加载阶段就处理NaN值,而不是在可视化阶段
- 对于不可见的关键点,使用特定的标记值(如-1)而不是NaN,可以提高代码的健壮性
- 在可视化函数中添加更严格的输入验证
总结
这个问题的出现揭示了深度学习框架中数据预处理、模型训练和可视化环节之间的协调问题。正确处理异常值对于构建健壮的训练流程至关重要。DeepLabCut团队已经意识到这个问题,并将在后续版本中提供更完善的解决方案。
对于用户来说,理解这个问题的本质有助于更好地使用DeepLabCut进行姿态估计研究,并在遇到类似问题时能够快速定位和解决。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259