DeepLabCut Pytorch版本训练中NaN值导致的关键点绘制错误分析
2025-06-09 01:54:14作者:仰钰奇
问题背景
在DeepLabCut Pytorch版本(DLC3.0)的模型训练过程中,当系统尝试将关键点可视化并记录到WandB日志时,可能会遇到一个由NaN值引发的错误。这个错误会导致训练过程中断,影响模型开发流程。
错误现象
错误的核心表现为在绘制关键点椭圆时出现的"x1必须大于或等于x0"的ValueError。具体来说,当PIL库的ImageDraw模块尝试绘制椭圆时,发现传入的x1坐标值小于x0坐标值,违反了绘图的基本规则。
根本原因分析
经过深入排查,发现问题的根源在于:
- 当某些关键点被标记为不可见或缺失时,系统会使用NaN值来表示这些关键点
- 在可视化阶段,这些NaN值没有被正确处理
- NaN值被传递到绘图函数中,导致坐标计算异常
- 最终触发了PIL库的坐标验证错误
技术细节
在DeepLabCut的logger.py文件中,_prepare_image方法负责准备要记录到WandB的图像。该方法会:
- 对图像进行去归一化处理(如果配置要求)
- 转换图像数据类型为uint8
- 绘制关键点和边界框(如果存在)
问题主要出现在关键点绘制阶段。当关键点张量中包含NaN值时,torchvision的draw_keypoints函数无法正确处理这些异常值,最终导致PIL绘图错误。
解决方案
目前有两种解决方案:
临时解决方案
修改训练配置文件,禁用WandB的图像记录功能:
logger:
type: WandbLogger
image_log_interval: null
这种方法简单有效,但会牺牲关键点可视化功能。
长期解决方案
在logger.py的_prepare_image方法中添加NaN值处理逻辑:
if keypoints is not None and len(keypoints) > 0:
assert len(keypoints.shape) == 3
# 将包含NaN的关键点设置为0
keypoints[torch.isnan(keypoints).any(dim=2)] = 0
image = draw_keypoints(
image, keypoints=keypoints[..., :2], colors="red", radius=5
)
这种方法能够保留可视化功能,同时避免NaN值导致的错误。
最佳实践建议
- 在训练前检查数据集,确保没有异常的关键点标注
- 考虑在数据加载阶段就处理NaN值,而不是在可视化阶段
- 对于不可见的关键点,使用特定的标记值(如-1)而不是NaN,可以提高代码的健壮性
- 在可视化函数中添加更严格的输入验证
总结
这个问题的出现揭示了深度学习框架中数据预处理、模型训练和可视化环节之间的协调问题。正确处理异常值对于构建健壮的训练流程至关重要。DeepLabCut团队已经意识到这个问题,并将在后续版本中提供更完善的解决方案。
对于用户来说,理解这个问题的本质有助于更好地使用DeepLabCut进行姿态估计研究,并在遇到类似问题时能够快速定位和解决。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178