Milvus数据库在Pod故障恢复后查询异常的深度分析与解决方案
问题背景
在分布式数据库系统Milvus的日常运维中,我们遇到了一个典型的高可用性问题:当Milvus的standalone模式实例从Pod被强制终止并恢复后,系统虽然能够重新启动,但在执行搜索(search)、查询(query)和混合搜索(hybrid search)操作时,出现了大量DEADLINE_EXCEEDED错误。这些错误直接影响了系统的可用性和用户体验。
错误现象分析
从日志中可以观察到,当客户端发起查询请求后,系统在10秒的超时时间内未能完成操作,最终返回了DEADLINE_EXCEEDED错误。这种错误通常表明系统在处理请求时遇到了性能瓶颈或资源竞争问题。
典型的错误日志显示:
grpc RpcError: [query], <_MultiThreadedRendezvous: StatusCode.DEADLINE_EXCEEDED, Deadline Exceeded>
根本原因
经过技术团队的深入调查,发现问题根源在于:
-
数据插入延迟:在系统恢复过程中,数据插入操作变得异常缓慢,这直接影响了后续查询操作所需的时间戳安全(tsafe)等待机制。
-
时间戳同步问题:查询操作需要等待所有插入操作完成并达到一致的状态时间戳(tsafe),但由于插入操作延迟,导致查询操作无法在超时时间内获取到所需的时间戳。
-
资源竞争:系统恢复过程中,多个组件同时启动并尝试重建状态,造成了CPU和内存资源的激烈竞争。
解决方案
针对这一问题,技术团队实施了以下解决方案:
-
优化tsafe等待机制:改进了查询操作对时间戳安全的等待策略,使其在系统恢复期间能够更智能地处理延迟情况。
-
资源分配调整:重新设计了系统恢复过程中的资源分配策略,确保关键操作能够获得足够的计算资源。
-
超时机制改进:根据系统负载动态调整gRPC调用的超时时间,在恢复期间适当延长超时阈值。
-
优先级调度:为查询操作分配更高的执行优先级,确保即使在恢复期间也能维持基本的查询能力。
验证结果
该修复方案在Milvus 2.5-20250402-c9a354d4-amd64版本中得到了验证,确认解决了Pod恢复后的查询异常问题。系统现在能够在故障恢复后快速重建服务能力,保证查询操作的正常执行。
最佳实践建议
对于生产环境中的Milvus部署,我们建议:
-
监控系统恢复期间的资源使用情况,确保有足够的资源余量。
-
考虑在系统恢复期间暂时降低查询负载,给系统充分的恢复时间。
-
定期测试故障恢复场景,验证系统的自愈能力。
-
保持系统版本更新,及时获取最新的稳定性改进。
通过这次问题的分析和解决,Milvus在高可用性方面又迈出了坚实的一步,为大规模生产部署提供了更可靠的保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00