Milvus数据库在Pod故障恢复后查询异常的深度分析与解决方案
问题背景
在分布式数据库系统Milvus的日常运维中,我们遇到了一个典型的高可用性问题:当Milvus的standalone模式实例从Pod被强制终止并恢复后,系统虽然能够重新启动,但在执行搜索(search)、查询(query)和混合搜索(hybrid search)操作时,出现了大量DEADLINE_EXCEEDED错误。这些错误直接影响了系统的可用性和用户体验。
错误现象分析
从日志中可以观察到,当客户端发起查询请求后,系统在10秒的超时时间内未能完成操作,最终返回了DEADLINE_EXCEEDED错误。这种错误通常表明系统在处理请求时遇到了性能瓶颈或资源竞争问题。
典型的错误日志显示:
grpc RpcError: [query], <_MultiThreadedRendezvous: StatusCode.DEADLINE_EXCEEDED, Deadline Exceeded>
根本原因
经过技术团队的深入调查,发现问题根源在于:
-
数据插入延迟:在系统恢复过程中,数据插入操作变得异常缓慢,这直接影响了后续查询操作所需的时间戳安全(tsafe)等待机制。
-
时间戳同步问题:查询操作需要等待所有插入操作完成并达到一致的状态时间戳(tsafe),但由于插入操作延迟,导致查询操作无法在超时时间内获取到所需的时间戳。
-
资源竞争:系统恢复过程中,多个组件同时启动并尝试重建状态,造成了CPU和内存资源的激烈竞争。
解决方案
针对这一问题,技术团队实施了以下解决方案:
-
优化tsafe等待机制:改进了查询操作对时间戳安全的等待策略,使其在系统恢复期间能够更智能地处理延迟情况。
-
资源分配调整:重新设计了系统恢复过程中的资源分配策略,确保关键操作能够获得足够的计算资源。
-
超时机制改进:根据系统负载动态调整gRPC调用的超时时间,在恢复期间适当延长超时阈值。
-
优先级调度:为查询操作分配更高的执行优先级,确保即使在恢复期间也能维持基本的查询能力。
验证结果
该修复方案在Milvus 2.5-20250402-c9a354d4-amd64版本中得到了验证,确认解决了Pod恢复后的查询异常问题。系统现在能够在故障恢复后快速重建服务能力,保证查询操作的正常执行。
最佳实践建议
对于生产环境中的Milvus部署,我们建议:
-
监控系统恢复期间的资源使用情况,确保有足够的资源余量。
-
考虑在系统恢复期间暂时降低查询负载,给系统充分的恢复时间。
-
定期测试故障恢复场景,验证系统的自愈能力。
-
保持系统版本更新,及时获取最新的稳定性改进。
通过这次问题的分析和解决,Milvus在高可用性方面又迈出了坚实的一步,为大规模生产部署提供了更可靠的保障。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00