强烈推荐:NSFW 数据抓取器——您的一站式图像分类数据收集工具
在机器学习和深度学习领域中,数据是王道。没有高质量的训练数据集,再强大的算法也难以发挥其真正实力。今天,我们要向大家介绍一款非常特别且功能强大的开源项目:NSFW Data Scraper。它能够自动收集成千上万张图片用于训练图像分类模型,涵盖了从敏感内容到安全级别的广泛主题。
项目介绍
NSFW Data Scraper是一套脚本集合,旨在自动化收集包括但不限于"敏感内容"、"特定风格"以及"日常"等类别在内的大量图像资料。这些图像可用于训练深度学习模型,特别是针对特定内容识别或过滤的应用场景。通过精心设计的脚本流程,该项目确保了收集过程的高效性和数据质量。
项目技术分析
项目的核心技术点在于利用了RipMe应用的强大抓取能力来下载各类网站上的图片链接,并进一步下载实际的图片文件。此外,该数据抓取器还整合了两个额外的数据源:Danbooru2018数据库(用于SFW动漫图)和Caltech256数据集(用于SFW中立图),使得数据种类更加丰富多样。
项目的亮点之一是在Docker容器内运行所有脚本,极大地简化了环境配置和依赖管理问题,让任何人都能轻松启动并运行数据收集任务。这一设计不仅增强了跨平台兼容性,也保证了稳定一致的执行效果。
技术应用场景
图像分类系统
对于需要处理大量图像并进行自动分类的应用,如社交媒体的内容审核,或者特定网站的自动标签系统,NSFW Data Scraper提供了充足的训练数据支持。
内容过滤系统
网络管理和家长控制软件可以运用该数据集训练模型,以更精准地识别和过滤不适宜内容,保护青少年网络安全。
特定内容检测
电商平台、在线广告或视频会议服务可以利用这类数据集对上传内容进行预筛,防止不当信息传播。
项目特点
- 全自动化:从网页链接获取到图片下载,再到后期的数据整理和清理,整个流程几乎不需要人工干预。
- 高灵活性:用户可以根据需求选择不同的数据来源,甚至自定义URL文本文件扩展数据采集范围。
- 便于维护:所有的操作都在一个Docker镜像中完成,无需担心环境配置问题,降低了使用门槛。
- 资源丰富:涵盖了五大类别的图片,满足各种图像分类训练的需求。
综上所述,NSFW Data Scraper是一个强大而实用的工具,无论你是学术研究者还是工业界开发者,都能从中受益匪浅。马上尝试,开启您的图像分类探索之旅!
请注意,在使用NSFW Data Scraper时应遵守当地法律法规和道德规范,确保数据使用的正当性和合法性。我们鼓励将这项技术应用于有益于社会和个人福祉的方向。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00