GDRNPP:BOP挑战赛2022冠军解决方案
2024-09-18 21:22:06作者:庞队千Virginia
项目介绍
GDRNPP_BOP2022 是一个在 BOP 挑战赛 2022 中获得多项大奖的解决方案,由清华大学团队开发。该项目在 ECCV'22 上展示了其卓越的性能,并提供了详细的代码和模型供开发者使用。GDRNPP 是 Geometry-Guided Direct Regression Network 的改进版本,专注于单目 6D 物体姿态估计,通过增强的域随机化和更强大的网络架构,显著提升了模型的精度和鲁棒性。
项目技术分析
数据准备
项目使用了来自 BOP 网站的 6D 姿态数据集和 VOC 2012 的背景图像。此外,还提供了测试边界框的下载链接。数据集的结构需要按照指定格式进行组织,以确保代码的正常运行。
模型训练与测试
GDRNPP 采用了 YOLOX 作为检测方法,并使用了更强的数据增强和 Ranger 优化器。训练和测试过程分别通过 train_yolox.sh 和 test_yolox.sh 脚本进行。
姿态估计
GDRNPP 在 GDR-Net 的基础上进行了多项改进,包括:
- 域随机化:在训练过程中使用了更强的域随机化操作。
- 网络架构:采用了更强大的 Convnext 作为骨干网络,并使用两个掩码头分别预测模态掩码和可见掩码。
- 训练细节:调整了学习率、权重衰减、可见阈值和边界框类型等参数。
姿态优化
项目还提供了基于深度信息的姿态优化方法,包括快速优化和迭代优化两种方式。快速优化通过比较渲染物体深度和观测深度来优化平移,而迭代优化则提供了更精细的调整。
项目及技术应用场景
GDRNPP 适用于需要高精度 6D 物体姿态估计的场景,如机器人抓取、增强现实(AR)、虚拟现实(VR)等。其强大的域随机化和网络架构使其在复杂和动态环境中表现出色,能够有效应对光照变化、遮挡和背景干扰等问题。
项目特点
- 冠军解决方案:GDRNPP 在 BOP 挑战赛 2022 中获得了多项大奖,证明了其卓越的性能。
- 强大的域随机化:通过增强的域随机化操作,提高了模型在不同环境下的鲁棒性。
- 先进的网络架构:采用 Convnext 作为骨干网络,显著提升了模型的精度和效率。
- 全面的姿态优化:提供了快速优化和迭代优化两种方式,满足不同应用场景的需求。
GDRNPP 不仅是一个技术先进的开源项目,更是一个经过实战检验的高效解决方案。无论你是研究者还是开发者,GDRNPP 都能为你提供强大的工具和支持,帮助你在 6D 物体姿态估计领域取得突破。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19