MemAE 异常检测项目使用教程
1. 项目目录结构及介绍
memae-anomaly-detection/
├── data/
│ ├── img/
│ └── imgs/
├── matlab_script/
├── models/
├── options/
├── utils/
├── LICENSE
├── README.md
├── script_eval_video.py
├── script_testing.py
├── script_training.py
├── test_video_AE.sh
├── test_video_MemAE.sh
└── train_video_MemAE.sh
目录结构介绍
-
data/: 数据目录,包含用于训练和测试的图像数据。
- img/: 存放图像数据的子目录。
- imgs/: 存放图像数据的子目录。
-
matlab_script/: MATLAB脚本目录,包含用于数据准备的脚本。
-
models/: 模型目录,存放预训练模型和训练后的模型文件。
-
options/: 配置选项目录,包含训练和测试的配置文件。
-
utils/: 工具目录,包含项目中使用的各种辅助函数和工具。
-
LICENSE: 项目许可证文件。
-
README.md: 项目说明文件,包含项目的概述、安装和使用说明。
-
script_eval_video.py: 视频评估脚本,用于评估视频数据的异常检测效果。
-
script_testing.py: 测试脚本,用于测试模型的性能。
-
script_training.py: 训练脚本,用于训练模型。
-
test_video_AE.sh: 自动编码器(AE)视频测试脚本。
-
test_video_MemAE.sh: 记忆增强自动编码器(MemAE)视频测试脚本。
-
train_video_MemAE.sh: 记忆增强自动编码器(MemAE)训练脚本。
2. 项目的启动文件介绍
2.1 script_eval_video.py
该脚本用于评估视频数据的异常检测效果。通过加载预训练模型并处理视频数据,输出异常检测的结果。
2.2 script_testing.py
该脚本用于测试模型的性能。通过加载预训练模型并处理测试数据,输出模型的准确率和召回率等性能指标。
2.3 script_training.py
该脚本用于训练模型。通过加载训练数据并使用配置文件中的参数进行模型训练,最终保存训练好的模型。
2.4 test_video_AE.sh
该脚本是自动编码器(AE)视频测试的启动脚本。通过调用相关Python脚本,对视频数据进行异常检测。
2.5 test_video_MemAE.sh
该脚本是记忆增强自动编码器(MemAE)视频测试的启动脚本。通过调用相关Python脚本,对视频数据进行异常检测。
2.6 train_video_MemAE.sh
该脚本是记忆增强自动编码器(MemAE)训练的启动脚本。通过调用相关Python脚本,对模型进行训练。
3. 项目的配置文件介绍
3.1 options/training_options.py
该文件包含了训练模型的配置选项,如数据路径、模型路径、结果路径、超参数等。在训练模型之前,需要根据实际情况修改这些配置选项。
3.2 options/testing_options.py
该文件包含了测试模型的配置选项,如数据路径、模型路径、结果路径等。在测试模型之前,需要根据实际情况修改这些配置选项。
3.3 options/eval_options.py
该文件包含了评估模型的配置选项,如数据路径、模型路径、结果路径等。在评估模型之前,需要根据实际情况修改这些配置选项。
通过以上配置文件,用户可以根据自己的需求调整模型的训练、测试和评估过程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00