PyThresh:强大的Python异常检测阈值工具包
2024-09-26 01:47:48作者:卓炯娓
项目介绍
PyThresh 是一个全面且可扩展的 Python工具包,专门用于在单变量或多变量数据中阈值化异常检测的似然分数。它旨在与 PyOD 协同工作,并采用了类似的语法和数据结构。然而,PyThresh 不仅限于与单一库配合使用,它可以阈值化由异常检测器生成的似然分数,从而消除了用户在设置污染水平或猜测数据集中可能存在的异常数量时的猜测工作。这些非参数方法通过依赖统计学来阈值化异常似然分数,减少了用户的手动输入。所有阈值函数返回一个二进制数组,其中内点用 0 表示,异常用 1 表示。
PyThresh 包含了超过 30 种阈值化算法,从简单的统计分析(如 Z-score)到涉及图论和拓扑学的复杂数学方法。
项目技术分析
PyThresh 的核心技术在于其多样化的阈值化算法库,这些算法能够处理各种类型的数据和异常检测场景。其技术栈包括:
- 统计方法:如 Z-score、IQR 等,适用于简单的数据分布分析。
- 数学方法:如基于图论和拓扑学的方法,适用于复杂的数据结构。
- 机器学习方法:如混合模型(MIXMOD)和变分自编码器(VAE),适用于高维数据和非线性关系的处理。
PyThresh 的设计理念是减少用户的手动干预,通过自动化的阈值选择来提高异常检测的准确性和效率。
项目及技术应用场景
PyThresh 适用于多种异常检测场景,包括但不限于:
- 金融欺诈检测:自动识别交易数据中的异常行为。
- 网络安全:检测网络流量中的异常模式,预防潜在的攻击。
- 工业监控:实时监控生产过程中的异常,确保设备和流程的正常运行。
- 医疗诊断:分析患者数据,识别潜在的健康风险。
PyThresh 的灵活性和强大的算法库使其能够适应各种复杂的数据环境和业务需求。
项目特点
- 全面性:PyThresh 提供了超过 30 种阈值化算法,覆盖了从简单到复杂的多种数据处理需求。
- 易用性:用户只需几行代码即可实现异常检测和阈值化,大大降低了使用门槛。
- 可扩展性:PyThresh 支持多种数据类型和异常检测器,能够与不同的数据处理和机器学习库无缝集成。
- 自动化:通过自动化的阈值选择,减少了用户的手动干预,提高了检测的准确性和效率。
快速开始
以下是一个简单的示例,展示如何使用 PyThresh 进行异常检测和阈值化:
# 训练 KNN 检测器
from pyod.models.knn import KNN
from pythresh.thresholds.filter import FILTER
clf = KNN()
clf.fit(X_train)
# 获取异常分数
decision_scores = clf.decision_scores_ # 训练数据的原始异常分数
# 获取异常标签
thres = FILTER()
labels = thres.eval(decision_scores)
安装
推荐使用 pip 或 conda 进行安装:
pip install pythresh # 正常安装
pip install --upgrade pythresh # 或更新到最新版本
conda install -c conda-forge pythresh
参考文献
如需引用 PyThresh,请访问 PyThresh Citation。
结语
PyThresh 是一个功能强大且易于使用的异常检测阈值工具包,适用于各种数据科学和机器学习应用场景。无论你是数据科学家、研究人员还是开发者,PyThresh 都能帮助你更高效地进行异常检测和数据分析。立即尝试 PyThresh,体验其强大的功能和便捷的操作吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K