PyThresh:强大的Python异常检测阈值工具包
2024-09-26 17:02:59作者:卓炯娓
项目介绍
PyThresh 是一个全面且可扩展的 Python工具包,专门用于在单变量或多变量数据中阈值化异常检测的似然分数。它旨在与 PyOD 协同工作,并采用了类似的语法和数据结构。然而,PyThresh 不仅限于与单一库配合使用,它可以阈值化由异常检测器生成的似然分数,从而消除了用户在设置污染水平或猜测数据集中可能存在的异常数量时的猜测工作。这些非参数方法通过依赖统计学来阈值化异常似然分数,减少了用户的手动输入。所有阈值函数返回一个二进制数组,其中内点用 0 表示,异常用 1 表示。
PyThresh 包含了超过 30 种阈值化算法,从简单的统计分析(如 Z-score)到涉及图论和拓扑学的复杂数学方法。
项目技术分析
PyThresh 的核心技术在于其多样化的阈值化算法库,这些算法能够处理各种类型的数据和异常检测场景。其技术栈包括:
- 统计方法:如 Z-score、IQR 等,适用于简单的数据分布分析。
- 数学方法:如基于图论和拓扑学的方法,适用于复杂的数据结构。
- 机器学习方法:如混合模型(MIXMOD)和变分自编码器(VAE),适用于高维数据和非线性关系的处理。
PyThresh 的设计理念是减少用户的手动干预,通过自动化的阈值选择来提高异常检测的准确性和效率。
项目及技术应用场景
PyThresh 适用于多种异常检测场景,包括但不限于:
- 金融欺诈检测:自动识别交易数据中的异常行为。
- 网络安全:检测网络流量中的异常模式,预防潜在的攻击。
- 工业监控:实时监控生产过程中的异常,确保设备和流程的正常运行。
- 医疗诊断:分析患者数据,识别潜在的健康风险。
PyThresh 的灵活性和强大的算法库使其能够适应各种复杂的数据环境和业务需求。
项目特点
- 全面性:PyThresh 提供了超过 30 种阈值化算法,覆盖了从简单到复杂的多种数据处理需求。
- 易用性:用户只需几行代码即可实现异常检测和阈值化,大大降低了使用门槛。
- 可扩展性:PyThresh 支持多种数据类型和异常检测器,能够与不同的数据处理和机器学习库无缝集成。
- 自动化:通过自动化的阈值选择,减少了用户的手动干预,提高了检测的准确性和效率。
快速开始
以下是一个简单的示例,展示如何使用 PyThresh 进行异常检测和阈值化:
# 训练 KNN 检测器
from pyod.models.knn import KNN
from pythresh.thresholds.filter import FILTER
clf = KNN()
clf.fit(X_train)
# 获取异常分数
decision_scores = clf.decision_scores_ # 训练数据的原始异常分数
# 获取异常标签
thres = FILTER()
labels = thres.eval(decision_scores)
安装
推荐使用 pip 或 conda 进行安装:
pip install pythresh # 正常安装
pip install --upgrade pythresh # 或更新到最新版本
conda install -c conda-forge pythresh
参考文献
如需引用 PyThresh,请访问 PyThresh Citation。
结语
PyThresh 是一个功能强大且易于使用的异常检测阈值工具包,适用于各种数据科学和机器学习应用场景。无论你是数据科学家、研究人员还是开发者,PyThresh 都能帮助你更高效地进行异常检测和数据分析。立即尝试 PyThresh,体验其强大的功能和便捷的操作吧!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5