DO-Conv 开源项目教程
2024-08-17 15:57:06作者:邓越浪Henry
项目介绍
DO-Conv(Depthwise Over-Parameterized Convolutional Layer)是一种深度可分离的过参数化卷积层,旨在提升卷积神经网络(CNN)在图像分类、检测和分割等视觉任务中的性能。DO-Conv 通过简单地替换传统的卷积层,即可在不增加推理阶段计算复杂度的情况下,提升网络性能。该项目在 TensorFlow、PyTorch 和 GluonCV 中提供了参考实现。
项目快速启动
环境准备
确保安装了以下版本的库:
- PyTorch:
pytorch==1.4.0 - TorchVision:
torchvision==0.5.0
示例代码
以下是一个使用 DO-Conv 替换传统卷积层的 PyTorch 示例:
import torch
import torch.nn as nn
from do_conv_pytorch import DOConv2d
# 定义模型
model = nn.Sequential(
DOConv2d(1, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
DOConv2d(16, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
DOConv2d(16, 10, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d(1),
nn.Flatten()
)
# 示例输入
input_data = torch.randn(1, 1, 28, 28)
output = model(input_data)
print(output)
应用案例和最佳实践
图像分类
DO-Conv 在 MNIST 数据集上的应用示例:
- 运行基准示例以获取准确率:
python sample_pt.py - 替换传统卷积层为 DO-Conv 层:
model = nn.Sequential( DOConv2d(1, 16, kernel_size=3, stride=2, padding=1), nn.ReLU(), DOConv2d(16, 16, kernel_size=3, stride=2, padding=1), nn.ReLU(), DOConv2d(16, 10, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten() )
最佳实践
- 版本兼容性:确保使用的 PyTorch 和 TorchVision 版本符合要求。
- 性能评估:通过多次运行评估平均准确率,以确保 DO-Conv 带来的性能提升。
典型生态项目
DO-Conv 可以与多种深度学习框架和工具集成,以下是一些典型的生态项目:
- TensorFlow:用于大规模分布式训练和推理。
- PyTorch:广泛用于研究和开发,支持动态计算图。
- GluonCV:提供丰富的计算机视觉模型和工具。
通过这些生态项目的支持,DO-Conv 可以更广泛地应用于各种视觉任务中,进一步提升模型的性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
基于MC1496的鉴相器资源文件介绍:一款强大的电子电路工具 macOS安装python3.8:轻松掌握Python环境配置【亲测免费】 YOLOv8系列--AI自瞄项目:实现高效目标检测的利器 BT1120规范资源下载介绍:数字视频信号传输的关键标准 sockperf网络测试工具及使用方法下载仓库 探索renren-fast2.1与renren-security3.2:轻量级权限管理系统的卓越之选 商用车智能底盘技术路线图 Linux服务器TDSQL单机安装指南:轻松部署高效数据库 SAP中文标准教材汇总资源下载说明 AUTOSAR_SWS_E2ELibrary资源文件介绍:汽车行业E2E通信标准化解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134