DO-Conv 开源项目教程
2024-08-17 06:52:50作者:邓越浪Henry
项目介绍
DO-Conv(Depthwise Over-Parameterized Convolutional Layer)是一种深度可分离的过参数化卷积层,旨在提升卷积神经网络(CNN)在图像分类、检测和分割等视觉任务中的性能。DO-Conv 通过简单地替换传统的卷积层,即可在不增加推理阶段计算复杂度的情况下,提升网络性能。该项目在 TensorFlow、PyTorch 和 GluonCV 中提供了参考实现。
项目快速启动
环境准备
确保安装了以下版本的库:
- PyTorch:
pytorch==1.4.0 - TorchVision:
torchvision==0.5.0
示例代码
以下是一个使用 DO-Conv 替换传统卷积层的 PyTorch 示例:
import torch
import torch.nn as nn
from do_conv_pytorch import DOConv2d
# 定义模型
model = nn.Sequential(
DOConv2d(1, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
DOConv2d(16, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
DOConv2d(16, 10, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d(1),
nn.Flatten()
)
# 示例输入
input_data = torch.randn(1, 1, 28, 28)
output = model(input_data)
print(output)
应用案例和最佳实践
图像分类
DO-Conv 在 MNIST 数据集上的应用示例:
- 运行基准示例以获取准确率:
python sample_pt.py - 替换传统卷积层为 DO-Conv 层:
model = nn.Sequential( DOConv2d(1, 16, kernel_size=3, stride=2, padding=1), nn.ReLU(), DOConv2d(16, 16, kernel_size=3, stride=2, padding=1), nn.ReLU(), DOConv2d(16, 10, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten() )
最佳实践
- 版本兼容性:确保使用的 PyTorch 和 TorchVision 版本符合要求。
- 性能评估:通过多次运行评估平均准确率,以确保 DO-Conv 带来的性能提升。
典型生态项目
DO-Conv 可以与多种深度学习框架和工具集成,以下是一些典型的生态项目:
- TensorFlow:用于大规模分布式训练和推理。
- PyTorch:广泛用于研究和开发,支持动态计算图。
- GluonCV:提供丰富的计算机视觉模型和工具。
通过这些生态项目的支持,DO-Conv 可以更广泛地应用于各种视觉任务中,进一步提升模型的性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
207
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
134
873