DO-Conv 开源项目教程
2024-08-17 15:57:06作者:邓越浪Henry
项目介绍
DO-Conv(Depthwise Over-Parameterized Convolutional Layer)是一种深度可分离的过参数化卷积层,旨在提升卷积神经网络(CNN)在图像分类、检测和分割等视觉任务中的性能。DO-Conv 通过简单地替换传统的卷积层,即可在不增加推理阶段计算复杂度的情况下,提升网络性能。该项目在 TensorFlow、PyTorch 和 GluonCV 中提供了参考实现。
项目快速启动
环境准备
确保安装了以下版本的库:
- PyTorch:
pytorch==1.4.0 - TorchVision:
torchvision==0.5.0
示例代码
以下是一个使用 DO-Conv 替换传统卷积层的 PyTorch 示例:
import torch
import torch.nn as nn
from do_conv_pytorch import DOConv2d
# 定义模型
model = nn.Sequential(
DOConv2d(1, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
DOConv2d(16, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
DOConv2d(16, 10, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d(1),
nn.Flatten()
)
# 示例输入
input_data = torch.randn(1, 1, 28, 28)
output = model(input_data)
print(output)
应用案例和最佳实践
图像分类
DO-Conv 在 MNIST 数据集上的应用示例:
- 运行基准示例以获取准确率:
python sample_pt.py - 替换传统卷积层为 DO-Conv 层:
model = nn.Sequential( DOConv2d(1, 16, kernel_size=3, stride=2, padding=1), nn.ReLU(), DOConv2d(16, 16, kernel_size=3, stride=2, padding=1), nn.ReLU(), DOConv2d(16, 10, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten() )
最佳实践
- 版本兼容性:确保使用的 PyTorch 和 TorchVision 版本符合要求。
- 性能评估:通过多次运行评估平均准确率,以确保 DO-Conv 带来的性能提升。
典型生态项目
DO-Conv 可以与多种深度学习框架和工具集成,以下是一些典型的生态项目:
- TensorFlow:用于大规模分布式训练和推理。
- PyTorch:广泛用于研究和开发,支持动态计算图。
- GluonCV:提供丰富的计算机视觉模型和工具。
通过这些生态项目的支持,DO-Conv 可以更广泛地应用于各种视觉任务中,进一步提升模型的性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355