Text-Embeddings-Inference项目中的CPU资源限制优化实践
背景介绍
在容器化部署环境中,Docker Swarm和Kubernetes都提供了限制容器CPU使用量的功能。然而,当我们在Text-Embeddings-Inference(TEI)这样的高性能推理服务中应用这些限制时,如果不进行特殊配置,可能会遇到严重的性能下降问题。
问题现象
通过实际测试发现,在4核8线程的i3-8300H处理器上,当使用Docker的CPU限制功能时,性能表现差异显著:
- 无CPU限制时:16.87请求/秒,CPU使用率465%
- 使用cpuset=0,1时:11.48请求/秒,CPU使用率185%
- 使用cpus=2限制时:1.82请求/秒,CPU使用率200%
- 使用cpus=2+环境变量优化后:11.03请求/秒,CPU使用率150%
可以看到,单纯使用CPU限制而不进行优化时,性能下降了约6倍,这显然是不可接受的。
问题根源
这个问题源于Linux cgroups的CPU限制机制与应用程序线程池管理的不同步。当容器被限制使用2个CPU核心时,如果应用程序仍然创建大量线程(基于物理CPU核心数),这些线程会被频繁调度和限制,导致严重的上下文切换开销和性能下降。
解决方案
针对Text-Embeddings-Inference项目,可以通过设置以下环境变量来优化性能:
MKL_NUM_THREADS=1
MKL_DOMAIN_NUM_THREADS="MKL_BLAS=1"
MKL_DYNAMIC="FALSE"
这些变量控制着数学核心库(MKL)的线程行为,确保它们不会创建超出CPU限制的线程数。在实际应用中,应将数字"1"替换为等于或略大于分配的CPU限制数的整数。
最佳实践建议
- 在多CPU服务器上部署时,务必设置这些环境变量
- 变量值应与分配的CPU核心数相匹配
- 对于Kubernetes部署,确保resources.limits.cpu与这些环境变量协调一致
- 在生产环境中进行性能测试,找到最适合的线程数配置
技术原理深入
当容器被限制CPU使用量时,操作系统通过cgroups机制实现这一限制。然而,大多数应用程序在启动时会查询系统可用的CPU核心数来初始化线程池。如果应用程序不知道容器被限制的CPU数量,它会创建过多的线程,导致:
- 线程间频繁的上下文切换
- CPU缓存频繁失效
- 操作系统调度器过载
- 实际计算资源利用率下降
通过设置MKL相关环境变量,我们告诉数学计算库使用适当数量的线程,避免了上述问题。
未来展望
虽然目前需要手动配置这些环境变量,但理想情况下,应用程序应该能够自动感知容器的CPU限制。一些现代编程语言(如Java 15+)已经实现了这一功能。希望未来Text-Embeddings-Inference项目也能内置这种自动检测机制,简化部署配置。
对于现在而言,理解这一问题并正确配置环境变量,是确保TEI在容器环境中发挥最佳性能的关键。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









