LLaMA-Factory项目中Qwen2.5-VL模型微调时loss为0和grad_norm为NaN问题的分析与解决
问题背景
在LLaMA-Factory项目中使用Qwen2.5-VL-3B-Instruct模型进行微调时,部分用户遇到了训练过程中loss突然变为0且grad_norm显示为NaN的问题。这个问题通常伴随着PyTorch的警告信息:"cuDNN SDPA backward got grad_output.strides() != output.strides()",表明在反向传播过程中出现了张量步幅不匹配的情况。
问题表现
主要症状包括:
- 训练初期loss突然降为0
- grad_norm显示为NaN
- 控制台输出PyTorch关于cuDNN SDPA的警告信息
- 训练过程虽然可以继续,但模型无法有效学习
根本原因分析
经过社区多位开发者的测试和验证,这个问题主要由以下几个因素导致:
-
PyTorch版本问题:PyTorch 2.5.0版本存在已知的SDPA(缩放点积注意力)实现缺陷,会导致反向传播时张量步幅不匹配。
-
注意力机制实现选择:默认使用的SDPA注意力实现在某些硬件配置下不稳定。
-
DeepSpeed配置:使用Zero-2优化策略时更容易出现此问题。
-
Flash Attention缺失:未正确安装或启用Flash Attention优化。
解决方案
1. 升级PyTorch版本
将PyTorch升级到2.5.1或更高版本可以解决大部分SDPA相关的问题:
pip install torch==2.5.1
2. 切换注意力实现方式
在配置文件中明确指定使用"eager"注意力而非默认的SDPA:
flash_attn: false # 禁用Flash Attention
或者使用更稳定的Flash Attention 2实现:
flash_attn: fa2 # 使用Flash Attention 2
3. 调整DeepSpeed配置
将DeepSpeed配置从Zero-2改为Zero-3通常能解决grad_norm为NaN的问题:
deepspeed: examples/deepspeed/ds_z3_config.json
4. 正确安装Flash Attention
确保环境中正确安装了Flash Attention并进行编译:
pip install flash-attn --no-build-isolation
5. 检查数据格式
确保输入数据格式正确,特别是多模态数据:
{
"messages": [
{"content": "<image>xxx", "role": "user"},
{"content": "xxx", "role": "assistant"}
],
"images": ["xxx"]
}
预防措施
-
环境一致性:使用与项目推荐版本一致的PyTorch、DeepSpeed和Flash Attention组合。
-
逐步验证:先在小型数据集上测试训练流程,确认无误后再进行全量训练。
-
监控指标:密切关注训练初期的loss和grad_norm变化,及时发现问题。
-
日志记录:保留完整的训练日志,便于问题排查。
总结
Qwen2.5-VL模型微调过程中的loss为0和grad_norm为NaN问题通常与环境配置相关,特别是PyTorch版本和注意力实现方式的选择。通过升级PyTorch、调整注意力实现、优化DeepSpeed配置以及确保Flash Attention正确安装,可以有效解决这一问题。建议用户在开始大规模训练前,先进行小规模测试验证环境配置的正确性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00