LLaMA-Factory项目中Qwen2.5-VL模型微调时loss为0和grad_norm为NaN问题的分析与解决
问题背景
在LLaMA-Factory项目中使用Qwen2.5-VL-3B-Instruct模型进行微调时,部分用户遇到了训练过程中loss突然变为0且grad_norm显示为NaN的问题。这个问题通常伴随着PyTorch的警告信息:"cuDNN SDPA backward got grad_output.strides() != output.strides()",表明在反向传播过程中出现了张量步幅不匹配的情况。
问题表现
主要症状包括:
- 训练初期loss突然降为0
- grad_norm显示为NaN
- 控制台输出PyTorch关于cuDNN SDPA的警告信息
- 训练过程虽然可以继续,但模型无法有效学习
根本原因分析
经过社区多位开发者的测试和验证,这个问题主要由以下几个因素导致:
-
PyTorch版本问题:PyTorch 2.5.0版本存在已知的SDPA(缩放点积注意力)实现缺陷,会导致反向传播时张量步幅不匹配。
-
注意力机制实现选择:默认使用的SDPA注意力实现在某些硬件配置下不稳定。
-
DeepSpeed配置:使用Zero-2优化策略时更容易出现此问题。
-
Flash Attention缺失:未正确安装或启用Flash Attention优化。
解决方案
1. 升级PyTorch版本
将PyTorch升级到2.5.1或更高版本可以解决大部分SDPA相关的问题:
pip install torch==2.5.1
2. 切换注意力实现方式
在配置文件中明确指定使用"eager"注意力而非默认的SDPA:
flash_attn: false # 禁用Flash Attention
或者使用更稳定的Flash Attention 2实现:
flash_attn: fa2 # 使用Flash Attention 2
3. 调整DeepSpeed配置
将DeepSpeed配置从Zero-2改为Zero-3通常能解决grad_norm为NaN的问题:
deepspeed: examples/deepspeed/ds_z3_config.json
4. 正确安装Flash Attention
确保环境中正确安装了Flash Attention并进行编译:
pip install flash-attn --no-build-isolation
5. 检查数据格式
确保输入数据格式正确,特别是多模态数据:
{
"messages": [
{"content": "<image>xxx", "role": "user"},
{"content": "xxx", "role": "assistant"}
],
"images": ["xxx"]
}
预防措施
-
环境一致性:使用与项目推荐版本一致的PyTorch、DeepSpeed和Flash Attention组合。
-
逐步验证:先在小型数据集上测试训练流程,确认无误后再进行全量训练。
-
监控指标:密切关注训练初期的loss和grad_norm变化,及时发现问题。
-
日志记录:保留完整的训练日志,便于问题排查。
总结
Qwen2.5-VL模型微调过程中的loss为0和grad_norm为NaN问题通常与环境配置相关,特别是PyTorch版本和注意力实现方式的选择。通过升级PyTorch、调整注意力实现、优化DeepSpeed配置以及确保Flash Attention正确安装,可以有效解决这一问题。建议用户在开始大规模训练前,先进行小规模测试验证环境配置的正确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00