NuScenes数据集中的未来自车轨迹可视化技术解析
2025-07-01 15:14:14作者:宣利权Counsellor
背景介绍
NuScenes数据集作为自动驾驶领域重要的开源数据集,提供了丰富的传感器数据和标注信息。在实际应用中,我们经常需要可视化自车(ego vehicle)的未来轨迹,这对于理解自动驾驶系统的行为预测和规划模块至关重要。
问题分析
在NuScenes数据集中,自车的未来轨迹信息可以通过连续采样点(sample)的ego_pose记录来获取。然而,直接将世界坐标系下的轨迹点投影到相机图像上会导致可视化结果不准确,这是因为:
- 坐标系不匹配:ego_pose记录的是车辆在世界坐标系中的位置,而相机图像是相机坐标系下的投影
- 缺少坐标转换:没有进行必要的坐标系转换就直接绘制
技术解决方案
正确的可视化流程应该包含以下步骤:
- 获取未来轨迹点:通过sample的next指针遍历未来帧,收集ego_pose信息
- 坐标系转换:将世界坐标系下的轨迹点转换到相机坐标系
- 投影到图像平面:使用相机内参将3D点投影到2D图像
实现细节
1. 坐标系转换原理
在NuScenes中,完整的坐标转换链为: 世界坐标系 → 自车坐标系 → 相机坐标系 → 图像坐标系
需要使用以下转换矩阵:
- 世界到自车的变换矩阵:从ego_pose获取
- 自车到相机的变换矩阵:从calibrated_sensor记录获取
2. 具体实现代码
import numpy as np
from nuscenes.utils.geometry_utils import view_points
# 获取相机内参和变换矩阵
cam_data = nusc.get('sample_data', sd_rec['data']['CAM_FRONT'])
calibrated_sensor = nusc.get('calibrated_sensor', cam_data['calibrated_sensor_token'])
K = np.array(calibrated_sensor['camera_intrinsic'])
# 转换轨迹点到相机坐标系
points = np.array(sdc_fut_traj).T # 2xN
points = np.vstack((points, np.zeros(points.shape[1]))) # 3xN (z=0)
points = np.vstack((points, np.ones(points.shape[1]))) # 齐次坐标
# 世界到自车的变换
ego_pose = nusc.get('ego_pose', cam_data['ego_pose_token'])
global_from_car = transform_matrix(ego_pose['translation'],
Quaternion(ego_pose['rotation']))
# 自车到相机的变换
car_from_sensor = transform_matrix(calibrated_sensor['translation'],
Quaternion(calibrated_sensor['rotation']))
# 组合变换
trans_matrix = np.dot(np.linalg.inv(car_from_sensor),
np.linalg.inv(global_from_car))
# 应用变换
transformed_points = np.dot(trans_matrix, points)
# 投影到图像
image_points = view_points(transformed_points[:3], K, normalize=True)
3. 可视化优化
对于更好的可视化效果,可以:
- 使用不同颜色表示时间序列
- 添加轨迹点之间的连线
- 调整点的大小表示时间远近
plt.figure(figsize=(12, 6))
plt.imshow(img)
colors = plt.cm.jet(np.linspace(0, 1, len(image_points[0])))
for i in range(len(image_points[0])-1):
plt.plot(image_points[0, i:i+2], image_points[1, i:i+2],
color=colors[i], linewidth=2)
plt.scatter(image_points[0, i], image_points[1, i],
color=colors[i], s=50*(i+1))
plt.axis('off')
plt.tight_layout()
应用场景
这种可视化技术在以下场景中特别有用:
- 自动驾驶系统调试:验证预测模块的输出
- 数据集分析:理解自车运动模式
- 算法评估:直观比较不同算法的预测结果
总结
在NuScenes数据集中正确可视化自车未来轨迹需要注意坐标系转换问题。通过将世界坐标系下的轨迹点转换到相机坐标系并正确投影,可以获得准确的图像可视化效果。这一技术在自动驾驶研发的多个环节都具有重要价值。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191