Puerts项目中FVector::GetSafeNormal方法的默认参数问题分析
问题背景
在Unreal Engine 5.3及以上版本中,FVector类的GetSafeNormal和GetSafeNormal2D方法新增了第二个参数,允许开发者指定一个参考向量,当向量归一化结果不合法时返回该参考向量。默认情况下,这个参考向量应该是FVector::ZeroVector。
然而,在使用Puerts(Unreal Engine的TypeScript绑定工具)时,开发者发现当调用这些方法使用默认参数时,返回的向量中会出现NaN(非数字)值,而不是预期的零向量。
问题复现
通过编写简单的测试脚本可以稳定复现这个问题:
import * as ue from 'ue'
for (let i = 0; i < 10000; i++) {
let v1_ue = new ue.Vector(0, 0, 1);
let v = v1_ue.GetSafeNormal2D(); // 预期返回{0,0,0}
if (v.X !== 0 || v.Y !== 0 || v.Z !== 0) {
console.log("i = ", i, "V: ", v.ToString());
debugger;
}
}
实际输出显示,在某些情况下会返回包含NaN的向量:
X=0.000 Y=nan Z=0.000
问题分析
经过深入调查,发现问题可能出在Puerts的静态绑定实现中。当将默认参数改为FVector::OneVector时,能够正确返回预期的{1,1,1}向量,这表明问题特定于FVector::ZeroVector的处理。
通过调试发现,问题可能源于参数传递时引用了栈上的临时变量,导致内存访问问题。具体来说,在绑定代码中:
.Method("GetSafeNormal", MakeFunction(&FVector::GetSafeNormal, UE_SMALL_NUMBER, FVector::ZeroVector))
.Method("GetSafeNormal2D", MakeFunction(&FVector::GetSafeNormal2D, UE_SMALL_NUMBER, FVector::ZeroVector))
FVector::ZeroVector作为默认参数传递时,可能被错误地处理为临时对象的引用,而非持久化的静态值。
技术细节
在C++中,FVector::ZeroVector是一个静态常量,通常应该安全地作为默认参数使用。然而,在跨语言边界(特别是与JavaScript交互)时,参数的传递机制可能导致引用失效。
当使用MakeFunction模板创建函数绑定时,默认参数的值需要在调用时保持有效。对于简单类型(如基本数值类型),这通常不是问题,但对于复杂对象(如FVector),需要确保其生命周期足够长。
解决方案
修复此问题需要确保默认参数FVector::ZeroVector在整个调用过程中保持有效。可能的解决方案包括:
- 修改绑定代码,确保正确传递静态常量的引用
- 显式构造一个新的FVector(0,0,0)作为默认参数,而非依赖FVector::ZeroVector
- 在JavaScript端显式传递零向量参数,避免依赖默认值
影响范围
此问题影响所有使用Puerts调用FVector::GetSafeNormal或GetSafeNormal2D方法并依赖默认参数的场景。在需要处理可能无效的向量归一化时,错误返回的NaN值可能导致后续数学计算出现意外行为。
最佳实践
在问题修复前,开发者可以采取以下临时解决方案:
// 显式传递零向量作为参数
let safeNormal = vector.GetSafeNormal(UE_SMALL_NUMBER, new ue.Vector(0,0,0));
这样可以避免依赖可能有问题的默认参数实现。
总结
跨语言绑定中的默认参数处理是一个需要特别注意的领域,特别是当涉及到复杂对象时。Puerts团队需要仔细检查默认参数的传递机制,确保静态常量的正确引用。对于开发者而言,在遇到类似问题时,显式传递参数而非依赖默认值是更可靠的做法。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00