CogVLM项目在单机多GPU环境下微调训练的内存问题分析与解决方案
2025-06-02 00:39:44作者:幸俭卉
问题背景
在CogVLM项目的微调训练过程中,用户尝试在一台配备8块V100 GPU的服务器上运行finetune_cogvlm_lora.sh
脚本时遇到了进程被意外终止的问题。该问题表现为训练进程在构建FineTuneTrainCogVLMModel
模型后被系统强制终止(返回代码-9),这通常与内存资源不足有关。
问题现象分析
从日志信息中可以观察到几个关键现象:
- 初始配置使用
MP_SIZE=1
(模型并行度为1)时,训练进程在构建模型阶段就被终止 - 当将模型并行度调整为4后,进程能够进一步执行到参数统计阶段,但仍然最终被终止
- 系统没有抛出明确的错误信息,而是直接终止了进程(返回代码-9)
根本原因
这类问题通常由以下原因导致:
- 内存不足:当模型并行度为1时,所有GPU需要加载完整的模型参数,导致内存需求激增
- 模型规模:CogVLM-base-490模型参数量庞大,每个模型并行rank需要加载约45亿参数
- 数据加载:训练数据预处理可能消耗大量内存资源
解决方案
针对这一问题,可以采取以下优化措施:
1. 调整模型并行度
增加模型并行度可以有效降低单个GPU的内存压力。建议根据GPU显存大小合理设置:
# 对于32GB显存的V100 GPU
MP_SIZE=4
2. 优化数据加载
修改数据加载方式以减少内存占用:
- 使用内存映射文件
- 减小批次大小
- 使用更高效的数据加载器
3. 启用检查点激活
在配置中确保启用了激活检查点功能:
{
"checkpoint_activations": true,
"vit_checkpoint_activations": true
}
4. 调整DeepSpeed配置
优化DeepSpeed配置文件中的内存相关参数:
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": 1,
"gradient_accumulation_steps": "auto",
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"weight_decay": "auto"
}
}
}
最佳实践建议
- 监控资源使用:在训练前使用
nvidia-smi
和free -h
监控GPU和内存使用情况 - 渐进式调试:从小规模数据和低并行度开始,逐步增加
- 日志分析:关注NCCL调试信息,排查通信问题
- 环境检查:确保所有依赖项(如apex、bitsandbytes)正确安装
总结
在CogVLM项目的大模型微调训练中,合理配置模型并行度和优化内存使用是关键。通过调整MP_SIZE参数和优化训练配置,可以有效解决因内存不足导致的进程终止问题。对于资源受限的环境,建议从较小的模型和数据集开始,逐步扩展到全量训练。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3