Llama Stack 与 AMD ROCm vLLM 容器集成实践指南
2025-05-29 01:06:58作者:温艾琴Wonderful
概述
本文将详细介绍如何在 AMD ROCm 环境下使用 Llama Stack 与 vLLM 容器进行集成部署。作为大模型应用框架,Llama Stack 提供了灵活的分布式部署方案,而 AMD ROCm 则为 AMD GPU 提供了高效的深度学习计算支持。
环境准备
硬件要求
- AMD GPU(推荐使用 MI300X 系列)
- 足够的内存空间(建议 32GB 以上)
软件依赖
- ROCm 6.3 或更高版本
- Docker 环境
- Python 3.10+
部署步骤
1. 启动 vLLM 服务容器
首先需要启动 AMD 官方提供的 vLLM 容器:
docker run -it --network=host rocm/vllm-dev:main
在容器内部启动 vLLM 服务:
python -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-3.2-3B-Instruct
2. 验证 vLLM 服务
通过简单的 curl 命令验证服务是否正常:
curl http://0.0.0.0:8000/v1/models
3. 配置 Llama Stack
创建 run.yaml 配置文件,内容应包含:
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm
provider_model_id: null
4. 启动 Llama Stack 容器
使用以下命令启动 Llama Stack 容器:
docker run -it --network=host \
-p 5001:5001 \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--yaml-config /root/my-run.yaml \
--port 5001 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env VLLM_URL=http://0.0.0.0:8000/v1
关键参数说明:
--network=host:使用主机网络模式,解决容器间通信问题-v ./run.yaml:/root/my-run.yaml:挂载配置文件VLLM_URL:设置为本地 vLLM 服务地址
常见问题解决
1. 模型注册失败
若出现模型注册失败的情况,请检查:
- run.yaml 文件中的模型配置是否正确
- 环境变量 INFERENCE_MODEL 是否设置正确
- vLLM 服务是否正常运行
2. 网络连接问题
在 Docker 环境中常见的网络问题可通过以下方式解决:
- 使用
--network=host参数 - 确保端口未被占用
- 检查防火墙设置
3. 性能优化建议
对于 AMD GPU 环境:
- 确保 ROCm 驱动版本与容器版本匹配
- 调整 vLLM 的 batch_size 参数以获得最佳性能
- 监控 GPU 使用情况,避免内存溢出
安全增强配置
如需增加安全防护,可以集成 Llama Guard 模型:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
llama stack run ./run-with-safety.yaml \
--port 5001 \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env VLLM_URL=http://0.0.0.0:8000/v1 \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env SAFETY_VLLM_URL=http://0.0.0.0:$SAFETY_PORT/v1
结语
通过本文的指导,开发者可以在 AMD ROCm 环境下成功部署 Llama Stack 与 vLLM 的集成方案。这种组合为 AMD GPU 用户提供了高效的大模型服务能力,同时也展示了 Llama Stack 框架的灵活性和可扩展性。在实际生产环境中,建议根据具体业务需求调整配置参数,并进行充分的性能测试和安全评估。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137