Deep-ED 开源项目教程
2024-09-17 03:58:33作者:胡易黎Nicole
1. 项目介绍
Deep-ED 是一个用于实体消歧(Entity Disambiguation)的深度学习框架。实体消歧是自然语言处理中的一个重要任务,旨在将文本中的提及(mention)映射到知识库中的正确实体。Deep-ED 通过结合局部神经注意力机制和全局模型,显著提高了实体消歧的准确性。
项目的主要特点包括:
- 使用深度学习技术进行实体消歧。
- 支持多种数据集的训练和测试。
- 提供预训练的实体嵌入(entity embeddings)。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Torch 和相关的库:
luarocks install cudnn
luarocks install cutorch
luarocks install tds
luarocks install gnuplot
luarocks install xlua
2.2 数据准备
创建一个 $DATA_PATH
目录,并下载所需的数据文件:
mkdir $DATA_PATH
cd $DATA_PATH
wget https://example.com/basic_data.zip
unzip basic_data.zip
2.3 生成数据文件
生成 Wikipedia 的 p_e_m 文件:
th data_gen/gen_p_e_m/gen_p_e_m_from_wiki.lua -root_data_dir $DATA_PATH
合并 Wikipedia 和 Crosswikis 的 p_e_m 文件:
th data_gen/gen_p_e_m/merge_crosswikis_wiki.lua -root_data_dir $DATA_PATH
生成 YAGO 的 p_e_m 文件:
th data_gen/gen_p_e_m/gen_p_e_m_from_yago.lua -root_data_dir $DATA_PATH
2.4 训练实体嵌入
训练实体嵌入模型:
mkdir $DATA_PATH/generated/ent_vecs
CUDA_VISIBLE_DEVICES=0 th entities/learn_e2v/learn_a.lua -root_data_dir $DATA_PATH |& tee log_train_entity_vecs
2.5 训练实体消歧模型
训练实体消歧模型:
mkdir $DATA_PATH/generated/ed_models/
mkdir $DATA_PATH/generated/ed_models/training_plots/
CUDA_VISIBLE_DEVICES=0 th ed/ed.lua -root_data_dir $DATA_PATH -ent_vecs_filename $ENTITY_VECS -model 'global' |& tee log_train_ed
3. 应用案例和最佳实践
3.1 应用案例
Deep-ED 可以应用于多种场景,如:
- 知识图谱构建:通过实体消歧,提高知识图谱的准确性。
- 信息检索:在搜索引擎中,通过实体消歧提高搜索结果的相关性。
- 问答系统:在问答系统中,通过实体消歧提高答案的准确性。
3.2 最佳实践
- 数据预处理:确保数据集的预处理步骤正确执行,以提高模型的训练效果。
- 超参数调优:通过调整超参数,如学习率、批量大小等,优化模型的性能。
- 模型评估:定期评估模型的性能,确保其在验证集上的表现符合预期。
4. 典型生态项目
Deep-ED 作为一个开源项目,可以与其他自然语言处理项目结合使用,形成更强大的生态系统。以下是一些典型的生态项目:
- BERT:结合 BERT 的预训练模型,进一步提升实体消歧的效果。
- Spacy:将 Deep-ED 集成到 Spacy 中,增强其实体识别和消歧功能。
- Elasticsearch:在 Elasticsearch 中使用 Deep-ED,提高信息检索的准确性。
通过这些生态项目的结合,Deep-ED 可以在更广泛的场景中发挥作用,提升自然语言处理的整体性能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K