Deep-ED 开源项目教程
2024-09-17 08:55:05作者:胡易黎Nicole
1. 项目介绍
Deep-ED 是一个用于实体消歧(Entity Disambiguation)的深度学习框架。实体消歧是自然语言处理中的一个重要任务,旨在将文本中的提及(mention)映射到知识库中的正确实体。Deep-ED 通过结合局部神经注意力机制和全局模型,显著提高了实体消歧的准确性。
项目的主要特点包括:
- 使用深度学习技术进行实体消歧。
- 支持多种数据集的训练和测试。
- 提供预训练的实体嵌入(entity embeddings)。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Torch 和相关的库:
luarocks install cudnn
luarocks install cutorch
luarocks install tds
luarocks install gnuplot
luarocks install xlua
2.2 数据准备
创建一个 $DATA_PATH 目录,并下载所需的数据文件:
mkdir $DATA_PATH
cd $DATA_PATH
wget https://example.com/basic_data.zip
unzip basic_data.zip
2.3 生成数据文件
生成 Wikipedia 的 p_e_m 文件:
th data_gen/gen_p_e_m/gen_p_e_m_from_wiki.lua -root_data_dir $DATA_PATH
合并 Wikipedia 和 Crosswikis 的 p_e_m 文件:
th data_gen/gen_p_e_m/merge_crosswikis_wiki.lua -root_data_dir $DATA_PATH
生成 YAGO 的 p_e_m 文件:
th data_gen/gen_p_e_m/gen_p_e_m_from_yago.lua -root_data_dir $DATA_PATH
2.4 训练实体嵌入
训练实体嵌入模型:
mkdir $DATA_PATH/generated/ent_vecs
CUDA_VISIBLE_DEVICES=0 th entities/learn_e2v/learn_a.lua -root_data_dir $DATA_PATH |& tee log_train_entity_vecs
2.5 训练实体消歧模型
训练实体消歧模型:
mkdir $DATA_PATH/generated/ed_models/
mkdir $DATA_PATH/generated/ed_models/training_plots/
CUDA_VISIBLE_DEVICES=0 th ed/ed.lua -root_data_dir $DATA_PATH -ent_vecs_filename $ENTITY_VECS -model 'global' |& tee log_train_ed
3. 应用案例和最佳实践
3.1 应用案例
Deep-ED 可以应用于多种场景,如:
- 知识图谱构建:通过实体消歧,提高知识图谱的准确性。
- 信息检索:在搜索引擎中,通过实体消歧提高搜索结果的相关性。
- 问答系统:在问答系统中,通过实体消歧提高答案的准确性。
3.2 最佳实践
- 数据预处理:确保数据集的预处理步骤正确执行,以提高模型的训练效果。
- 超参数调优:通过调整超参数,如学习率、批量大小等,优化模型的性能。
- 模型评估:定期评估模型的性能,确保其在验证集上的表现符合预期。
4. 典型生态项目
Deep-ED 作为一个开源项目,可以与其他自然语言处理项目结合使用,形成更强大的生态系统。以下是一些典型的生态项目:
- BERT:结合 BERT 的预训练模型,进一步提升实体消歧的效果。
- Spacy:将 Deep-ED 集成到 Spacy 中,增强其实体识别和消歧功能。
- Elasticsearch:在 Elasticsearch 中使用 Deep-ED,提高信息检索的准确性。
通过这些生态项目的结合,Deep-ED 可以在更广泛的场景中发挥作用,提升自然语言处理的整体性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
353
420
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
142
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759