Marigold项目中使用VKITTI数据集进行深度估计训练的实践指南
2025-06-29 14:06:45作者:侯霆垣
在深度估计领域,Marigold是一个备受关注的深度学习模型。本文将详细介绍如何使用VKITTI数据集来训练Marigold模型,特别是针对只有RGB数据的情况。
数据集准备要点
训练Marigold模型需要同时准备VKITTI的RGB图像和深度图数据。虽然原始问题中只提到了vkitti_2.0.3_rgb.tar文件,但实际上深度数据也是必不可少的。这两个数据集应当放置在同一个目录下,以便模型能够正确读取和配对RGB-D数据。
训练配置调整
Marigold的代码库支持两种数据加载方式:
- 直接使用解压后的目录结构
- 使用打包的tar文件
对于希望使用目录结构的用户,需要修改训练配置文件中的相关路径设置。具体而言,需要调整数据集配置文件中指向数据目录的路径参数。
验证集处理
值得注意的是,VKITTI验证集并非存储在单独的tar文件中。用户可以使用项目提供的验证集文件名列表,配合主数据集目录(或tar文件)来构建验证集。这种方式既节省存储空间,又能确保验证过程的准确性。
训练效果考量
根据Marigold项目的研究论文中的消融实验结果(表3),仅使用VKITTI单一数据集进行训练可能无法达到最佳效果。建议用户考虑结合其他数据集进行联合训练,以获得更鲁棒的深度估计性能。
实践建议
对于资源有限的开发者,可以优先考虑以下方案:
- 确保同时获取RGB和深度数据
- 使用目录结构而非tar文件以简化流程
- 合理划分训练/验证集
- 考虑数据增强策略弥补单一数据集的不足
通过以上方法,即使只使用VKITTI数据集,也能开展有意义的模型训练实验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135