首页
/ Marigold项目中使用VKITTI数据集进行深度估计训练的实践指南

Marigold项目中使用VKITTI数据集进行深度估计训练的实践指南

2025-06-29 10:52:13作者:侯霆垣

在深度估计领域,Marigold是一个备受关注的深度学习模型。本文将详细介绍如何使用VKITTI数据集来训练Marigold模型,特别是针对只有RGB数据的情况。

数据集准备要点

训练Marigold模型需要同时准备VKITTI的RGB图像和深度图数据。虽然原始问题中只提到了vkitti_2.0.3_rgb.tar文件,但实际上深度数据也是必不可少的。这两个数据集应当放置在同一个目录下,以便模型能够正确读取和配对RGB-D数据。

训练配置调整

Marigold的代码库支持两种数据加载方式:

  1. 直接使用解压后的目录结构
  2. 使用打包的tar文件

对于希望使用目录结构的用户,需要修改训练配置文件中的相关路径设置。具体而言,需要调整数据集配置文件中指向数据目录的路径参数。

验证集处理

值得注意的是,VKITTI验证集并非存储在单独的tar文件中。用户可以使用项目提供的验证集文件名列表,配合主数据集目录(或tar文件)来构建验证集。这种方式既节省存储空间,又能确保验证过程的准确性。

训练效果考量

根据Marigold项目的研究论文中的消融实验结果(表3),仅使用VKITTI单一数据集进行训练可能无法达到最佳效果。建议用户考虑结合其他数据集进行联合训练,以获得更鲁棒的深度估计性能。

实践建议

对于资源有限的开发者,可以优先考虑以下方案:

  1. 确保同时获取RGB和深度数据
  2. 使用目录结构而非tar文件以简化流程
  3. 合理划分训练/验证集
  4. 考虑数据增强策略弥补单一数据集的不足

通过以上方法,即使只使用VKITTI数据集,也能开展有意义的模型训练实验。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
14
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
289
828
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
485
388
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
110
195
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
58
139
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
364
37
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
60
7
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
977
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
96
250
CangjieMagicCangjieMagic
基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
578
41