Orchestrator 项目教程
1. 项目介绍
Orchestrator 是一个用于管理 MySQL 复制拓扑和高可用性的开源工具。它作为一个服务运行,并提供命令行访问、HTTP API 和 Web 界面。Orchestrator 支持以下功能:
- 发现:主动爬取拓扑并映射它们,读取 MySQL 的基本信息,如复制状态和配置。
- 重构:理解复制规则,支持基于 binlog 文件:位置、GTID、Pseudo GTID 和 Binlog 服务器的复制拓扑重构。
- 恢复:采用整体方法检测主节点和中间主节点的故障,支持自动或手动恢复。
2. 项目快速启动
2.1 安装依赖
在开始之前,确保你的系统已经安装了以下依赖:
- Go 语言环境
- MySQL 数据库
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/github/orchestrator.git
cd orchestrator
2.3 编译项目
在项目根目录下执行以下命令进行编译:
go build -o orchestrator ./cmd/orchestrator
2.4 配置文件
创建一个配置文件 orchestrator.conf.json,内容如下:
{
"Debug": true,
"EnableSyslog": false,
"ListenAddress": ":3000",
"MySQLTopologyUser": "orchestrator",
"MySQLTopologyPassword": "orchestrator",
"MySQLOrchestratorHost": "127.0.0.1",
"MySQLOrchestratorPort": 3306,
"MySQLOrchestratorDatabase": "orchestrator",
"MySQLOrchestratorUser": "orchestrator",
"MySQLOrchestratorPassword": "orchestrator"
}
2.5 启动服务
使用以下命令启动 Orchestrator 服务:
./orchestrator http
2.6 访问 Web 界面
打开浏览器,访问 http://localhost:3000,你将看到 Orchestrator 的 Web 界面。
3. 应用案例和最佳实践
3.1 应用案例
Orchestrator 可以用于管理复杂的 MySQL 复制拓扑,特别是在多数据中心和高可用性要求较高的场景中。例如,在一个跨数据中心的 MySQL 集群中,Orchestrator 可以帮助自动检测和恢复主节点故障,确保数据的高可用性。
3.2 最佳实践
- 配置监控:使用 Orchestrator 的 API 或 Web 界面监控 MySQL 集群的健康状态。
- 自动化恢复:配置 Orchestrator 自动处理主节点故障,减少人工干预。
- 定期演练:定期进行故障演练,确保 Orchestrator 的恢复机制在实际故障发生时能够正常工作。
4. 典型生态项目
4.1 Orchestrator Puppet 模块
Orchestrator Puppet 模块(https://github.com/github/puppet-orchestrator-for-mysql)可以帮助你使用 Puppet 自动化 Orchestrator 的部署和管理。
4.2 Orchestrator Chef Cookbook
Orchestrator Chef Cookbook(https://github.com/silviabotros/chef-orchestrator)提供了使用 Chef 自动化 Orchestrator 部署的解决方案。
4.3 Nagios/Icinga 检查
使用 Orchestrator API 的 Nagios/Icinga 检查(https://github.com/mcrauwel/go-check-orchestrator)可以帮助你将 Orchestrator 集成到现有的监控系统中。
通过以上步骤,你可以快速启动并使用 Orchestrator 管理你的 MySQL 复制拓扑和高可用性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00