解决SWIFT项目中VLLM GRPO推理参数设置导致的显存溢出问题
2025-05-31 22:21:03作者:卓艾滢Kingsley
在使用SWIFT项目进行GRPO强化学习训练时,合理配置VLLM参数对于充分利用GPU资源至关重要。本文将详细介绍如何正确设置VLLM参数以避免显存溢出问题。
问题现象
用户在运行GRPO训练脚本时遇到显存溢出错误,尽管指定了4张GPU卡(0,1,6,7),但系统仅实际使用了0和7两张卡。主要错误表现为CUDA内存不足,无法完成推理任务。
根本原因
经过分析,发现问题的根源在于脚本格式不规范。在Linux shell环境中,多行命令需要使用反斜杠()进行连接,而用户脚本中缺少了必要的反斜杠,导致环境变量设置未能正确传递到后续命令中。
解决方案
正确的脚本格式应如下:
CUDA_VISIBLE_DEVICES=0,1,6,7 \
NPROC_PER_NODE=3 \
swift rlhf \
--rlhf_type grpo \
--model /path/to/model \
--use_vllm true \
--vllm_device auto \
--vllm_gpu_memory_utilization 0.7 \
--vllm_max_model_len 8192 \
# 其他参数...
关键参数解析
- CUDA_VISIBLE_DEVICES:指定可用的GPU设备ID,多个设备用逗号分隔
- NPROC_PER_NODE:设置每个节点使用的进程数
- vllm_gpu_memory_utilization:控制VLLM使用的显存比例,0.7表示使用70%的显存
- vllm_max_model_len:设置模型处理的最大序列长度
最佳实践建议
- 在多GPU环境下,确保环境变量设置正确且完整
- 根据GPU显存大小合理设置vllm_gpu_memory_utilization参数
- 对于大模型,适当降低batch size以避免显存不足
- 使用torch_dtype参数控制精度,如bfloat16可显著减少显存占用
- 监控GPU使用情况,及时调整参数
总结
在SWIFT项目中使用VLLM进行GRPO训练时,正确的脚本格式和参数设置是保证训练顺利进行的关键。通过规范脚本编写和合理配置参数,可以有效避免显存溢出问题,充分利用多GPU资源。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135