Swift项目中GRPO训练显存溢出问题分析与解决方案
问题背景
在使用Swift 3.1.1版本进行GRPO(一种强化学习优化算法)训练时,用户报告在使用4张A100 80GB显卡的情况下仍然出现了显存溢出的问题。该问题发生在训练Qwen2.5-7B-Instruct模型时,尽管已经设置了相对保守的vllm_gpu_memory_utilization(0.6)和vllm_max_model_len(2048)参数,并使用了DeepSpeed的Zero3优化策略。
问题分析
通过对用户提供的配置和错误信息的分析,我们可以识别出几个可能导致显存溢出的关键因素:
-
批次大小设置不当:per_device_train_batch_size设置为8,结合gradient_accumulation_steps为8,实际有效批次大小较大。
-
输入序列长度影响:模型最大长度(max_length)设置为2048,但实际数据中的token长度可能接近或达到这个上限。
-
模型规模与显存需求:7B参数的模型在训练时本身就需要大量显存,特别是在使用LoRA适配器的情况下。
-
生成数量参数:num_generations设置为8,这会显著增加推理阶段的内存需求。
解决方案
针对上述问题,我们建议采取以下优化措施:
1. 调整批次相关参数
降低per_device_train_batch_size和gradient_accumulation_steps的值。例如:
- per_device_train_batch_size: 从8降至4或2
- gradient_accumulation_steps: 从8降至4
2. 控制输入序列长度
对训练数据进行预处理,限制最大token长度:
# 示例预处理代码
def filter_long_samples(example, max_length=1024):
return len(tokenizer(example['text'])['input_ids']) <= max_length
3. 优化生成参数
减少num_generations的数量,从8降至4或更低,以降低推理阶段的内存压力。
4. 进一步调整vLLM参数
虽然vllm_gpu_memory_utilization已经设置为0.6,但在极端情况下可以进一步降低至0.5。同时确保vllm_max_model_len与实际的输入长度需求匹配。
最佳实践建议
-
显存监控:在训练前使用nvidia-smi工具监控显存使用情况,逐步调整参数。
-
渐进式调整:从小批次开始,逐步增加批次大小,观察显存使用情况。
-
混合精度训练:确保正确设置了torch_dtype为bfloat16,这可以显著减少显存占用。
-
数据预处理:对训练数据进行充分的分析和预处理,移除过长的样本或进行适当的截断。
总结
在Swift项目中使用GRPO算法训练大语言模型时,显存管理是关键。通过合理配置批次大小、控制输入长度、优化生成参数以及充分利用DeepSpeed等优化技术,可以有效避免显存溢出问题。实践表明,对训练数据进行长度限制是最直接有效的解决方案之一,同时配合其他参数的调整,可以在有限的硬件资源下实现稳定的模型训练。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00