Swift项目中GRPO训练显存溢出问题分析与解决方案
问题背景
在使用Swift 3.1.1版本进行GRPO(一种强化学习优化算法)训练时,用户报告在使用4张A100 80GB显卡的情况下仍然出现了显存溢出的问题。该问题发生在训练Qwen2.5-7B-Instruct模型时,尽管已经设置了相对保守的vllm_gpu_memory_utilization(0.6)和vllm_max_model_len(2048)参数,并使用了DeepSpeed的Zero3优化策略。
问题分析
通过对用户提供的配置和错误信息的分析,我们可以识别出几个可能导致显存溢出的关键因素:
-
批次大小设置不当:per_device_train_batch_size设置为8,结合gradient_accumulation_steps为8,实际有效批次大小较大。
-
输入序列长度影响:模型最大长度(max_length)设置为2048,但实际数据中的token长度可能接近或达到这个上限。
-
模型规模与显存需求:7B参数的模型在训练时本身就需要大量显存,特别是在使用LoRA适配器的情况下。
-
生成数量参数:num_generations设置为8,这会显著增加推理阶段的内存需求。
解决方案
针对上述问题,我们建议采取以下优化措施:
1. 调整批次相关参数
降低per_device_train_batch_size和gradient_accumulation_steps的值。例如:
- per_device_train_batch_size: 从8降至4或2
- gradient_accumulation_steps: 从8降至4
2. 控制输入序列长度
对训练数据进行预处理,限制最大token长度:
# 示例预处理代码
def filter_long_samples(example, max_length=1024):
return len(tokenizer(example['text'])['input_ids']) <= max_length
3. 优化生成参数
减少num_generations的数量,从8降至4或更低,以降低推理阶段的内存压力。
4. 进一步调整vLLM参数
虽然vllm_gpu_memory_utilization已经设置为0.6,但在极端情况下可以进一步降低至0.5。同时确保vllm_max_model_len与实际的输入长度需求匹配。
最佳实践建议
-
显存监控:在训练前使用nvidia-smi工具监控显存使用情况,逐步调整参数。
-
渐进式调整:从小批次开始,逐步增加批次大小,观察显存使用情况。
-
混合精度训练:确保正确设置了torch_dtype为bfloat16,这可以显著减少显存占用。
-
数据预处理:对训练数据进行充分的分析和预处理,移除过长的样本或进行适当的截断。
总结
在Swift项目中使用GRPO算法训练大语言模型时,显存管理是关键。通过合理配置批次大小、控制输入长度、优化生成参数以及充分利用DeepSpeed等优化技术,可以有效避免显存溢出问题。实践表明,对训练数据进行长度限制是最直接有效的解决方案之一,同时配合其他参数的调整,可以在有限的硬件资源下实现稳定的模型训练。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









