Swift项目GRPO训练中vLLM调度器AssertionError问题分析与解决方案
问题背景
在使用Swift项目进行GRPO(Generalized Reinforcement Policy Optimization)微调时,当启用异步生成(async_generate)模式进行模型评估时,会遇到vLLM调度器抛出AssertionError的问题。具体表现为在评估阶段出现断言错误:"assert len(running_scheduled.prefill_seq_groups) == 0"。
问题现象
用户在配置中使用以下关键参数:
- use_vllm: true
- async_generate: true
- tensor_parallel_size: 1
- num_infer_workers: 1
在评估阶段,无论设置eval_use_evalscope为true还是false,都会出现相同的断言错误。错误发生在vLLM调度器的_schedule_default方法中,表明调度器在运行时检测到了未预期的预填充序列组。
问题分析
经过深入分析,这个问题主要源于以下几个方面:
-
vLLM调度器状态不一致:当异步生成模式启用时,vLLM调度器期望在调度时没有正在运行的预填充序列组,但实际运行时这个条件被违反。
-
评估数据集大小影响:初步怀疑与验证数据集过小有关,但用户反馈增加验证集样本数量后问题依旧存在。
-
执行模式差异:在colocate模式下(即不使用异步生成),问题不会出现,这表明问题与vLLM的异步执行机制有关。
-
权重同步机制:在GRPO训练过程中,模型权重需要频繁与vLLM引擎同步,异步模式下可能产生同步时序问题。
解决方案
Swift项目团队已经通过代码更新修复了这个问题。解决方案的核心要点包括:
-
强制使用vLLM服务器模式:在异步生成模式下,现在要求必须使用vLLM服务器模式(vllm_mode == server),这提供了更可靠的执行环境。
-
改进权重同步机制:无论使用colocate模式还是server模式,模型权重都会在每次更新后自动与vLLM模型同步,确保一致性。
-
推荐使用最新代码:用户需要从主分支安装最新代码,而非通过pip安装的稳定版本。
实施步骤
要正确实施GRPO训练并避免此问题,建议按照以下步骤操作:
- 从源码安装最新版Swift:
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .
-
使用vLLM服务器模式进行训练,通过swift rollout命令启动服务。
-
确保评估数据集具有足够数量的样本。
-
在配置中正确设置async_generate和相关vLLM参数。
技术要点
-
GRPO训练机制:GRPO是一种强化学习优化方法,需要频繁进行模型推理和评估,这对推理引擎的稳定性和性能提出了较高要求。
-
vLLM集成:Swift项目深度集成了vLLM引擎,用于高效的大模型推理。在异步模式下,vLLM可以提供更高的吞吐量,但也带来了更复杂的调度问题。
-
权重同步:训练过程中,主模型和推理引擎之间的权重同步是关键,Swift通过内部机制自动处理这一过程,无需人工干预。
最佳实践
-
对于生产环境,建议使用vLLM服务器模式,它提供了更好的稳定性和资源隔离。
-
监控训练过程中的内存使用情况,适当调整vLLM的内存利用率参数(vllm_gpu_memory_utilization)。
-
根据硬件配置合理设置tensor_parallel_size和num_infer_workers参数。
-
定期检查Swift项目的更新,以获取性能改进和错误修复。
通过以上分析和解决方案,用户可以在Swift项目中顺利使用GRPO进行模型微调,充分发挥异步生成模式的优势,同时避免调度器断言错误的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00