Transformers 开源项目最佳实践教程
2025-05-03 07:53:16作者:庞眉杨Will
1. 项目介绍
Transformers 是一个由著名的人工智能研究者 Andrej Karpathy 维护的开源项目,该项目基于 Python,提供了一系列用于自然语言处理(NLP)的预训练模型。这些模型能够在多种 NLP 任务中提供出色的表现,例如文本分类、机器翻译、文本生成等。项目使用 Hugging Face 的库作为基础,简化了模型的训练和部署过程。
2. 项目快速启动
要快速启动该项目,您需要首先确保您的环境中已经安装了必要的依赖。以下是启动项目的步骤:
# 克隆项目
git clone https://github.com/karpathy/transformers.git
# 进入项目目录
cd transformers
# 安装依赖
pip install -r requirements.txt
# 运行示例
python examples/run_summarization.py
上述命令将克隆项目到本地,安装依赖,并运行一个文本摘要的示例。
3. 应用案例和最佳实践
文本分类
文本分类是一个常见的 NLP 任务,可以使用预训练的 BERT 模型来进行。以下是一个简单的文本分类示例代码:
from transformers import BertTokenizer, BertForSequenceClassification
from torch.nn.functional import softmax
import torch
# 加载预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('bert-base-chinese')
# 输入文本
text = "这是一个例子。"
# 分词
encoded_input = tokenizer(text, return_tensors='pt')
# 预测
outputs = model(**encoded_input)
predictions = softmax(outputs.logits, dim=1)
# 输出预测结果
print(predictions)
机器翻译
使用预训练的模型进行机器翻译,可以参考以下代码:
from transformers import MarianMTModel, MarianTokenizer
# 加载预训练的翻译模型和分词器
model_name = 'Helsinki-NLP/opus-mt-en-zh'
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# 输入文本
text = "This is a test."
# 分词
encoded_input = tokenizer(text, return_tensors='pt')
# 翻译
translation = model.generate(encoded_input)
# 输出翻译结果
print(tokenizer.decode(translation[0], skip_special_tokens=True))
4. 典型生态项目
Transformers 生态中,有许多典型的项目可以供开发者参考和学习,以下是一些例子:
- Hugging Face 的 Transformer 模型库:提供了大量预训练模型和分词器,可供开发者直接使用或进一步开发。
- 🤗 Datasets:一个包含多种数据集的项目,可以方便地加载和处理数据。
- 🤗 Tokenizers:一个用于处理文本和生成 tokens 的库,与 Transformers 模型兼容。
通过这些项目,开发者可以更好地理解 Transformers 的使用,并构建自己的 NLP 应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355