Transformers 开源项目最佳实践教程
2025-05-03 07:53:16作者:庞眉杨Will
1. 项目介绍
Transformers 是一个由著名的人工智能研究者 Andrej Karpathy 维护的开源项目,该项目基于 Python,提供了一系列用于自然语言处理(NLP)的预训练模型。这些模型能够在多种 NLP 任务中提供出色的表现,例如文本分类、机器翻译、文本生成等。项目使用 Hugging Face 的库作为基础,简化了模型的训练和部署过程。
2. 项目快速启动
要快速启动该项目,您需要首先确保您的环境中已经安装了必要的依赖。以下是启动项目的步骤:
# 克隆项目
git clone https://github.com/karpathy/transformers.git
# 进入项目目录
cd transformers
# 安装依赖
pip install -r requirements.txt
# 运行示例
python examples/run_summarization.py
上述命令将克隆项目到本地,安装依赖,并运行一个文本摘要的示例。
3. 应用案例和最佳实践
文本分类
文本分类是一个常见的 NLP 任务,可以使用预训练的 BERT 模型来进行。以下是一个简单的文本分类示例代码:
from transformers import BertTokenizer, BertForSequenceClassification
from torch.nn.functional import softmax
import torch
# 加载预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('bert-base-chinese')
# 输入文本
text = "这是一个例子。"
# 分词
encoded_input = tokenizer(text, return_tensors='pt')
# 预测
outputs = model(**encoded_input)
predictions = softmax(outputs.logits, dim=1)
# 输出预测结果
print(predictions)
机器翻译
使用预训练的模型进行机器翻译,可以参考以下代码:
from transformers import MarianMTModel, MarianTokenizer
# 加载预训练的翻译模型和分词器
model_name = 'Helsinki-NLP/opus-mt-en-zh'
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# 输入文本
text = "This is a test."
# 分词
encoded_input = tokenizer(text, return_tensors='pt')
# 翻译
translation = model.generate(encoded_input)
# 输出翻译结果
print(tokenizer.decode(translation[0], skip_special_tokens=True))
4. 典型生态项目
Transformers 生态中,有许多典型的项目可以供开发者参考和学习,以下是一些例子:
- Hugging Face 的 Transformer 模型库:提供了大量预训练模型和分词器,可供开发者直接使用或进一步开发。
- 🤗 Datasets:一个包含多种数据集的项目,可以方便地加载和处理数据。
- 🤗 Tokenizers:一个用于处理文本和生成 tokens 的库,与 Transformers 模型兼容。
通过这些项目,开发者可以更好地理解 Transformers 的使用,并构建自己的 NLP 应用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134