Transformers 开源项目最佳实践教程
2025-05-03 20:08:04作者:庞眉杨Will
1. 项目介绍
Transformers 是一个由著名的人工智能研究者 Andrej Karpathy 维护的开源项目,该项目基于 Python,提供了一系列用于自然语言处理(NLP)的预训练模型。这些模型能够在多种 NLP 任务中提供出色的表现,例如文本分类、机器翻译、文本生成等。项目使用 Hugging Face 的库作为基础,简化了模型的训练和部署过程。
2. 项目快速启动
要快速启动该项目,您需要首先确保您的环境中已经安装了必要的依赖。以下是启动项目的步骤:
# 克隆项目
git clone https://github.com/karpathy/transformers.git
# 进入项目目录
cd transformers
# 安装依赖
pip install -r requirements.txt
# 运行示例
python examples/run_summarization.py
上述命令将克隆项目到本地,安装依赖,并运行一个文本摘要的示例。
3. 应用案例和最佳实践
文本分类
文本分类是一个常见的 NLP 任务,可以使用预训练的 BERT 模型来进行。以下是一个简单的文本分类示例代码:
from transformers import BertTokenizer, BertForSequenceClassification
from torch.nn.functional import softmax
import torch
# 加载预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('bert-base-chinese')
# 输入文本
text = "这是一个例子。"
# 分词
encoded_input = tokenizer(text, return_tensors='pt')
# 预测
outputs = model(**encoded_input)
predictions = softmax(outputs.logits, dim=1)
# 输出预测结果
print(predictions)
机器翻译
使用预训练的模型进行机器翻译,可以参考以下代码:
from transformers import MarianMTModel, MarianTokenizer
# 加载预训练的翻译模型和分词器
model_name = 'Helsinki-NLP/opus-mt-en-zh'
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
# 输入文本
text = "This is a test."
# 分词
encoded_input = tokenizer(text, return_tensors='pt')
# 翻译
translation = model.generate(encoded_input)
# 输出翻译结果
print(tokenizer.decode(translation[0], skip_special_tokens=True))
4. 典型生态项目
Transformers 生态中,有许多典型的项目可以供开发者参考和学习,以下是一些例子:
- Hugging Face 的 Transformer 模型库:提供了大量预训练模型和分词器,可供开发者直接使用或进一步开发。
- 🤗 Datasets:一个包含多种数据集的项目,可以方便地加载和处理数据。
- 🤗 Tokenizers:一个用于处理文本和生成 tokens 的库,与 Transformers 模型兼容。
通过这些项目,开发者可以更好地理解 Transformers 的使用,并构建自己的 NLP 应用。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0162DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile04
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
118
1.88 K

deepin linux kernel
C
22
6

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.24 K

React Native鸿蒙化仓库
C++
192
271

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
912
546

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
388

openGauss kernel ~ openGauss is an open source relational database management system
C++
143
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
68
58

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
81
2