DeepMD-kit多任务预训练模型微调中的原子类型映射问题解析
2025-07-10 13:31:41作者:凌朦慧Richard
问题背景
在使用DeepMD-kit进行分子动力学模拟时,研究人员经常会遇到需要基于预训练模型进行微调(fine-tuning)的场景。近期有用户报告了一个典型问题:在使用基于2024Q1版本的多任务预训练模型进行微调后,通过不同方式评估模型时出现了不一致的结果。
现象描述
用户基于OpenLAM 2.1.0的27头多任务预训练模型(分支为Domains_OC2M)进行微调,训练数据使用CP2K 2024.1计算得到。微调过程顺利完成,但在评估阶段发现:
- 使用
dp --pt test
命令测试时,DFT计算结果与DP预测结果表现出良好的一致性 - 使用Python API中的DeepEval模块进行重新标记(relabel)时,却发现与原始DFT标记数据存在显著差异
问题根源分析
经过深入调查,发现问题出在原子类型映射(atype mapping)的处理上。在多任务预训练模型中,原子类型映射必须与预训练阶段保持一致,即使用118种元素的完整type_map,而不是用户在input.json中自定义的type_map。
这与单任务预训练模型的行为不同。在单任务场景下,用户可以使用自定义的type_map,但在多任务模型中,必须保持与预训练一致的原子类型定义,否则会导致评估结果不一致的问题。
解决方案
对于使用多任务预训练模型进行微调的用户,需要特别注意以下几点:
- 保持原子类型映射一致性:必须使用与预训练模型相同的118元素type_map,不能随意修改
- 评估方法选择:不同评估方法可能对输入数据处理方式不同,需要确认评估流程是否正确处理了原子类型映射
- 数据预处理:确保训练数据和评估数据中的原子类型都正确映射到预训练模型定义的原子类型空间
经验总结
这个问题揭示了DeepMD-kit在多任务学习场景下的一个重要特性。多任务预训练模型通过共享底层表示学习不同元素体系的通用特征,因此原子类型的全局一致性至关重要。用户在进行微调时,必须尊重预训练阶段建立的原子类型体系,不能像单任务模型那样自由定义原子类型映射。
这一发现不仅解决了当前用户的问题,也为后续使用多任务预训练模型的研究人员提供了重要参考,避免了类似问题的发生。同时,这也提示DeepMD-kit开发团队需要在文档中更明确地强调多任务模型与单任务模型在使用上的这一关键区别。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0108AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp英语课程填空题提示缺失问题分析3 freeCodeCamp课程页面空白问题的技术分析与解决方案4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
214
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
979
580

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
96

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399