首页
/ DeepMD-kit多任务预训练模型微调中的原子类型映射问题解析

DeepMD-kit多任务预训练模型微调中的原子类型映射问题解析

2025-07-10 20:04:42作者:凌朦慧Richard

问题背景

在使用DeepMD-kit进行分子动力学模拟时,研究人员经常会遇到需要基于预训练模型进行微调(fine-tuning)的场景。近期有用户报告了一个典型问题:在使用基于2024Q1版本的多任务预训练模型进行微调后,通过不同方式评估模型时出现了不一致的结果。

现象描述

用户基于OpenLAM 2.1.0的27头多任务预训练模型(分支为Domains_OC2M)进行微调,训练数据使用CP2K 2024.1计算得到。微调过程顺利完成,但在评估阶段发现:

  1. 使用dp --pt test命令测试时,DFT计算结果与DP预测结果表现出良好的一致性
  2. 使用Python API中的DeepEval模块进行重新标记(relabel)时,却发现与原始DFT标记数据存在显著差异

问题根源分析

经过深入调查,发现问题出在原子类型映射(atype mapping)的处理上。在多任务预训练模型中,原子类型映射必须与预训练阶段保持一致,即使用118种元素的完整type_map,而不是用户在input.json中自定义的type_map。

这与单任务预训练模型的行为不同。在单任务场景下,用户可以使用自定义的type_map,但在多任务模型中,必须保持与预训练一致的原子类型定义,否则会导致评估结果不一致的问题。

解决方案

对于使用多任务预训练模型进行微调的用户,需要特别注意以下几点:

  1. 保持原子类型映射一致性:必须使用与预训练模型相同的118元素type_map,不能随意修改
  2. 评估方法选择:不同评估方法可能对输入数据处理方式不同,需要确认评估流程是否正确处理了原子类型映射
  3. 数据预处理:确保训练数据和评估数据中的原子类型都正确映射到预训练模型定义的原子类型空间

经验总结

这个问题揭示了DeepMD-kit在多任务学习场景下的一个重要特性。多任务预训练模型通过共享底层表示学习不同元素体系的通用特征,因此原子类型的全局一致性至关重要。用户在进行微调时,必须尊重预训练阶段建立的原子类型体系,不能像单任务模型那样自由定义原子类型映射。

这一发现不仅解决了当前用户的问题,也为后续使用多任务预训练模型的研究人员提供了重要参考,避免了类似问题的发生。同时,这也提示DeepMD-kit开发团队需要在文档中更明确地强调多任务模型与单任务模型在使用上的这一关键区别。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
852
505
kernelkernel
deepin linux kernel
C
21
5
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
240
283
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
UAVSUAVS
智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
vue-devuivue-devui
基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
614
74
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
175
260
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.07 K