Darts项目中TFT模型使用MapeLoss时预测NaN值的问题分析
2025-05-27 05:38:15作者:卓艾滢Kingsley
问题现象
在使用Darts库中的TFTModel时,当选择MapeLoss作为损失函数时,模型训练过程中会出现验证损失和训练损失显示为0的情况。更严重的是,当使用训练好的模型进行预测时,输出结果会全部变为NaN(非数字)值。
问题根源
经过深入分析,这个问题主要源于两个关键因素:
-
数据中的零值:当时间序列数据中包含零值时,MapeLoss(平均绝对百分比误差)的计算会出现数学上的未定义情况。因为MAPE的计算公式涉及除以实际值,当实际值为零时,计算结果会趋向无穷大。
-
损失函数处理机制:Darts库中的MapeLoss实现虽然包含了
_divide_no_nan
保护机制(当分母为零时返回零),但这种处理方式在深度学习训练过程中会带来副作用。当模型预测值变为NaN时,损失函数会返回零,这会影响反向传播过程,最终导致模型权重也变为NaN。
技术细节
在PyTorch框架下,损失函数的计算直接影响模型的梯度更新。当使用MapeLoss时:
- 前向传播过程中,如果遇到零值输入,
_divide_no_nan
会将结果设为零 - 这些零值损失会参与反向传播计算
- 在某些情况下,这会导致模型参数更新异常,最终产生NaN权重
- 一旦模型参数变为NaN,所有后续预测都会输出NaN
解决方案
针对这个问题,有以下几种可行的解决方案:
-
数据预处理:
- 避免使用MinMaxScaler将数据缩放到[0,1]区间,因为这样可能产生零值
- 考虑使用StandardScaler或其他不会产生零值的缩放方法
- 对数据中的零值进行适当处理(如替换为微小正值)
-
损失函数选择:
- 当数据可能包含零值时,避免使用MapeLoss
- 考虑使用MSELoss(均方误差)或MAELoss(平均绝对误差)等不受零值影响的损失函数
- 如果需要百分比误差度量,可考虑使用sMAPE(对称平均绝对百分比误差)
-
模型训练监控:
- 在训练过程中监控损失值的变化
- 设置EarlyStopping回调来检测异常训练情况
- 定期检查模型权重是否出现NaN值
最佳实践建议
- 在使用MapeLoss前,务必检查数据中是否包含零值
- 对于财务数据或其他可能包含零值的时间序列,优先考虑非百分比类损失函数
- 在模型开发初期,使用多种损失函数进行对比实验
- 建立完善的数据预处理流水线,确保数据质量
总结
这个问题揭示了深度学习时间序列预测中一个常见但容易被忽视的陷阱:损失函数与数据特性的匹配问题。通过这个案例,我们可以认识到,在构建预测模型时,不仅需要考虑模型架构的选择,还需要深入理解数据特性与损失函数之间的相互作用关系。合理的数据预处理和损失函数选择往往是模型成功的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133