Darts项目中TFT模型使用MapeLoss时预测NaN值的问题分析
2025-05-27 07:58:15作者:卓艾滢Kingsley
问题现象
在使用Darts库中的TFTModel时,当选择MapeLoss作为损失函数时,模型训练过程中会出现验证损失和训练损失显示为0的情况。更严重的是,当使用训练好的模型进行预测时,输出结果会全部变为NaN(非数字)值。
问题根源
经过深入分析,这个问题主要源于两个关键因素:
-
数据中的零值:当时间序列数据中包含零值时,MapeLoss(平均绝对百分比误差)的计算会出现数学上的未定义情况。因为MAPE的计算公式涉及除以实际值,当实际值为零时,计算结果会趋向无穷大。
-
损失函数处理机制:Darts库中的MapeLoss实现虽然包含了
_divide_no_nan保护机制(当分母为零时返回零),但这种处理方式在深度学习训练过程中会带来副作用。当模型预测值变为NaN时,损失函数会返回零,这会影响反向传播过程,最终导致模型权重也变为NaN。
技术细节
在PyTorch框架下,损失函数的计算直接影响模型的梯度更新。当使用MapeLoss时:
- 前向传播过程中,如果遇到零值输入,
_divide_no_nan会将结果设为零 - 这些零值损失会参与反向传播计算
- 在某些情况下,这会导致模型参数更新异常,最终产生NaN权重
- 一旦模型参数变为NaN,所有后续预测都会输出NaN
解决方案
针对这个问题,有以下几种可行的解决方案:
-
数据预处理:
- 避免使用MinMaxScaler将数据缩放到[0,1]区间,因为这样可能产生零值
- 考虑使用StandardScaler或其他不会产生零值的缩放方法
- 对数据中的零值进行适当处理(如替换为微小正值)
-
损失函数选择:
- 当数据可能包含零值时,避免使用MapeLoss
- 考虑使用MSELoss(均方误差)或MAELoss(平均绝对误差)等不受零值影响的损失函数
- 如果需要百分比误差度量,可考虑使用sMAPE(对称平均绝对百分比误差)
-
模型训练监控:
- 在训练过程中监控损失值的变化
- 设置EarlyStopping回调来检测异常训练情况
- 定期检查模型权重是否出现NaN值
最佳实践建议
- 在使用MapeLoss前,务必检查数据中是否包含零值
- 对于财务数据或其他可能包含零值的时间序列,优先考虑非百分比类损失函数
- 在模型开发初期,使用多种损失函数进行对比实验
- 建立完善的数据预处理流水线,确保数据质量
总结
这个问题揭示了深度学习时间序列预测中一个常见但容易被忽视的陷阱:损失函数与数据特性的匹配问题。通过这个案例,我们可以认识到,在构建预测模型时,不仅需要考虑模型架构的选择,还需要深入理解数据特性与损失函数之间的相互作用关系。合理的数据预处理和损失函数选择往往是模型成功的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355