Darts项目中TFT模型使用MapeLoss时预测NaN值的问题分析
2025-05-27 05:38:15作者:卓艾滢Kingsley
问题现象
在使用Darts库中的TFTModel时,当选择MapeLoss作为损失函数时,模型训练过程中会出现验证损失和训练损失显示为0的情况。更严重的是,当使用训练好的模型进行预测时,输出结果会全部变为NaN(非数字)值。
问题根源
经过深入分析,这个问题主要源于两个关键因素:
-
数据中的零值:当时间序列数据中包含零值时,MapeLoss(平均绝对百分比误差)的计算会出现数学上的未定义情况。因为MAPE的计算公式涉及除以实际值,当实际值为零时,计算结果会趋向无穷大。
-
损失函数处理机制:Darts库中的MapeLoss实现虽然包含了
_divide_no_nan
保护机制(当分母为零时返回零),但这种处理方式在深度学习训练过程中会带来副作用。当模型预测值变为NaN时,损失函数会返回零,这会影响反向传播过程,最终导致模型权重也变为NaN。
技术细节
在PyTorch框架下,损失函数的计算直接影响模型的梯度更新。当使用MapeLoss时:
- 前向传播过程中,如果遇到零值输入,
_divide_no_nan
会将结果设为零 - 这些零值损失会参与反向传播计算
- 在某些情况下,这会导致模型参数更新异常,最终产生NaN权重
- 一旦模型参数变为NaN,所有后续预测都会输出NaN
解决方案
针对这个问题,有以下几种可行的解决方案:
-
数据预处理:
- 避免使用MinMaxScaler将数据缩放到[0,1]区间,因为这样可能产生零值
- 考虑使用StandardScaler或其他不会产生零值的缩放方法
- 对数据中的零值进行适当处理(如替换为微小正值)
-
损失函数选择:
- 当数据可能包含零值时,避免使用MapeLoss
- 考虑使用MSELoss(均方误差)或MAELoss(平均绝对误差)等不受零值影响的损失函数
- 如果需要百分比误差度量,可考虑使用sMAPE(对称平均绝对百分比误差)
-
模型训练监控:
- 在训练过程中监控损失值的变化
- 设置EarlyStopping回调来检测异常训练情况
- 定期检查模型权重是否出现NaN值
最佳实践建议
- 在使用MapeLoss前,务必检查数据中是否包含零值
- 对于财务数据或其他可能包含零值的时间序列,优先考虑非百分比类损失函数
- 在模型开发初期,使用多种损失函数进行对比实验
- 建立完善的数据预处理流水线,确保数据质量
总结
这个问题揭示了深度学习时间序列预测中一个常见但容易被忽视的陷阱:损失函数与数据特性的匹配问题。通过这个案例,我们可以认识到,在构建预测模型时,不仅需要考虑模型架构的选择,还需要深入理解数据特性与损失函数之间的相互作用关系。合理的数据预处理和损失函数选择往往是模型成功的关键因素之一。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5