Darts项目中TSMixer模型训练与验证损失差异问题分析
2025-05-27 07:04:18作者:齐添朝
问题背景
在使用Darts库中的TSMixer模型进行多元时间序列预测时,开发者经常遇到一个典型问题:训练损失远低于验证损失,有时甚至相差几个数量级。这种现象在时间序列预测任务中并不罕见,但需要深入理解其背后的原因才能正确解决。
关键现象
开发者观察到以下典型现象:
- 训练过程中,训练损失曲线持续低于验证损失曲线
- 尽管损失差异显著,但模型预测结果在实际应用中表现良好
- 尝试不同损失函数(MAELoss、MapeLoss)后问题依然存在
可能原因分析
数据分布特性
- 数值范围跨度大:目标变量范围从0到数百万,形成长尾分布
- 零值比例高:约10%的数据点为零值
- 时间趋势明显:序列早期值较小,随时间推移逐渐增大
数据预处理问题
- 缩放器选择:默认使用MinMaxScaler可能不适合长尾分布
- 静态协变量处理:650个分组组合使用Ordinal编码可能不合适
- 训练/验证集分割:按时间顺序分割导致数据分布不一致
模型配置因素
- 损失函数选择:使用QuantileRegression似然函数时需注意分位数设置
- 归一化方法:未启用实例归一化可能导致跨序列尺度问题
- 批次限制:limit_train_batches和limit_val_batches设置影响损失计算
解决方案建议
数据预处理优化
- 异常值处理:对极端大值进行截断或转换
- 替代缩放方法:考虑使用RobustScaler或对数变换
- 静态协变量编码:对大量分类变量使用OneHotEncoding
模型配置调整
- 启用实例归一化:设置use_reversible_instance_norm=True
- 损失函数调整:检查QuantileRegression分位数设置是否合理
- 训练策略优化:增加早停耐心值,降低学习率
验证方法改进
- 交叉验证:采用时间序列交叉验证而非简单分割
- 子集测试:先用少量稳定序列验证模型行为
- 损失监控:同时监控原始尺度下的评估指标
实例归一化的作用
Darts中的use_reversible_instance_norm参数特别值得关注。这一功能会对每个时间序列单独进行归一化,类似于pytorch-forecasting中的EncoderNormalizer。它能有效解决以下问题:
- 不同序列间尺度差异大
- 单个序列内存在明显趋势
- 需要保持预测后可逆转换
总结
当遇到训练与验证损失差异大的情况时,开发者应系统检查数据分布、预处理流程和模型配置。在Darts项目中,合理使用实例归一化、优化数据缩放方法以及调整验证策略,通常能有效改善这一问题。特别对于具有长尾分布和大量零值的时间序列数据,更需要谨慎处理数据预处理环节。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K