Darts项目中TSMixer模型训练与验证损失差异问题分析
2025-05-27 04:59:46作者:齐添朝
问题背景
在使用Darts库中的TSMixer模型进行多元时间序列预测时,开发者经常遇到一个典型问题:训练损失远低于验证损失,有时甚至相差几个数量级。这种现象在时间序列预测任务中并不罕见,但需要深入理解其背后的原因才能正确解决。
关键现象
开发者观察到以下典型现象:
- 训练过程中,训练损失曲线持续低于验证损失曲线
- 尽管损失差异显著,但模型预测结果在实际应用中表现良好
- 尝试不同损失函数(MAELoss、MapeLoss)后问题依然存在
可能原因分析
数据分布特性
- 数值范围跨度大:目标变量范围从0到数百万,形成长尾分布
- 零值比例高:约10%的数据点为零值
- 时间趋势明显:序列早期值较小,随时间推移逐渐增大
数据预处理问题
- 缩放器选择:默认使用MinMaxScaler可能不适合长尾分布
- 静态协变量处理:650个分组组合使用Ordinal编码可能不合适
- 训练/验证集分割:按时间顺序分割导致数据分布不一致
模型配置因素
- 损失函数选择:使用QuantileRegression似然函数时需注意分位数设置
- 归一化方法:未启用实例归一化可能导致跨序列尺度问题
- 批次限制:limit_train_batches和limit_val_batches设置影响损失计算
解决方案建议
数据预处理优化
- 异常值处理:对极端大值进行截断或转换
- 替代缩放方法:考虑使用RobustScaler或对数变换
- 静态协变量编码:对大量分类变量使用OneHotEncoding
模型配置调整
- 启用实例归一化:设置use_reversible_instance_norm=True
- 损失函数调整:检查QuantileRegression分位数设置是否合理
- 训练策略优化:增加早停耐心值,降低学习率
验证方法改进
- 交叉验证:采用时间序列交叉验证而非简单分割
- 子集测试:先用少量稳定序列验证模型行为
- 损失监控:同时监控原始尺度下的评估指标
实例归一化的作用
Darts中的use_reversible_instance_norm参数特别值得关注。这一功能会对每个时间序列单独进行归一化,类似于pytorch-forecasting中的EncoderNormalizer。它能有效解决以下问题:
- 不同序列间尺度差异大
- 单个序列内存在明显趋势
- 需要保持预测后可逆转换
总结
当遇到训练与验证损失差异大的情况时,开发者应系统检查数据分布、预处理流程和模型配置。在Darts项目中,合理使用实例归一化、优化数据缩放方法以及调整验证策略,通常能有效改善这一问题。特别对于具有长尾分布和大量零值的时间序列数据,更需要谨慎处理数据预处理环节。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882