Darts项目中TSMixer模型训练与验证损失差异问题分析
2025-05-27 16:55:54作者:齐添朝
问题背景
在使用Darts库中的TSMixer模型进行多元时间序列预测时,开发者经常遇到一个典型问题:训练损失远低于验证损失,有时甚至相差几个数量级。这种现象在时间序列预测任务中并不罕见,但需要深入理解其背后的原因才能正确解决。
关键现象
开发者观察到以下典型现象:
- 训练过程中,训练损失曲线持续低于验证损失曲线
- 尽管损失差异显著,但模型预测结果在实际应用中表现良好
- 尝试不同损失函数(MAELoss、MapeLoss)后问题依然存在
可能原因分析
数据分布特性
- 数值范围跨度大:目标变量范围从0到数百万,形成长尾分布
- 零值比例高:约10%的数据点为零值
- 时间趋势明显:序列早期值较小,随时间推移逐渐增大
数据预处理问题
- 缩放器选择:默认使用MinMaxScaler可能不适合长尾分布
- 静态协变量处理:650个分组组合使用Ordinal编码可能不合适
- 训练/验证集分割:按时间顺序分割导致数据分布不一致
模型配置因素
- 损失函数选择:使用QuantileRegression似然函数时需注意分位数设置
- 归一化方法:未启用实例归一化可能导致跨序列尺度问题
- 批次限制:limit_train_batches和limit_val_batches设置影响损失计算
解决方案建议
数据预处理优化
- 异常值处理:对极端大值进行截断或转换
- 替代缩放方法:考虑使用RobustScaler或对数变换
- 静态协变量编码:对大量分类变量使用OneHotEncoding
模型配置调整
- 启用实例归一化:设置use_reversible_instance_norm=True
- 损失函数调整:检查QuantileRegression分位数设置是否合理
- 训练策略优化:增加早停耐心值,降低学习率
验证方法改进
- 交叉验证:采用时间序列交叉验证而非简单分割
- 子集测试:先用少量稳定序列验证模型行为
- 损失监控:同时监控原始尺度下的评估指标
实例归一化的作用
Darts中的use_reversible_instance_norm参数特别值得关注。这一功能会对每个时间序列单独进行归一化,类似于pytorch-forecasting中的EncoderNormalizer。它能有效解决以下问题:
- 不同序列间尺度差异大
- 单个序列内存在明显趋势
- 需要保持预测后可逆转换
总结
当遇到训练与验证损失差异大的情况时,开发者应系统检查数据分布、预处理流程和模型配置。在Darts项目中,合理使用实例归一化、优化数据缩放方法以及调整验证策略,通常能有效改善这一问题。特别对于具有长尾分布和大量零值的时间序列数据,更需要谨慎处理数据预处理环节。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134