深度联合实体消歧(Depth Enhanced Disambiguation, deep-ed)项目指南
2024-09-24 11:02:55作者:傅爽业Veleda
项目概述
深度联合实体消歧项目是基于EMNLP'17论文《Deep Joint Entity Disambiguation with Local Neural Attention》实现的一个开源工具。该项目致力于通过局部神经注意力机制来提升实体消歧任务的性能。源代码托管在GitHub上,其主要贡献在于提供了一种有效的方法,用于解决文本中实体名称的模糊性问题。
目录结构及介绍
项目的主要目录结构如下:
.
├── basic_data # 基础数据集存放处
│ ├── ...
├── data_gen # 数据生成脚本所在目录
│ ├── gen_p_e_m # 实体-篇章-提及的生成相关脚本
│ ├── gen_test_train_data # 训练与测试数据集生成脚本
│ ├── gen_wiki_data # 维基数据处理脚本
│ └── ...
├── entities # 包含实体相关处理逻辑
├── learn_e2v # 实体嵌入学习相关代码
├── models # 模型定义和训练相关代码
├── README.md # 项目说明文件
├── test.lua # 测试模型性能的脚本
├── utils # 辅助工具函数
└── words # 词频相关处理脚本
basic_data: 存储原始数据和基本数据集。data_gen: 提供了一系列脚本来生成必要的训练和测试数据集。entities: 处理实体及其嵌入的学习和过滤。learn_e2v: 负责训练实体向量的模块。models: 包含项目的模型架构。test.lua: 用于验证模型效果的脚本。utils和words: 分别包含通用实用程序和词语相关处理。
启动文件介绍
项目的核心运行不依赖于单一的“启动”文件,而是通过一系列脚本逐步完成任务,如数据准备、模型训练等。然而,关键的执行流程始于以下几点:
-
数据预处理:首先,你需要运行位于
data_gen目录下的多个脚本来生成所需的数据文件。 -
模型训练:模型的训练并不是由一个简单的入口点触发。需手动按步骤配置并调用相应的Lua脚本,例如使用
test.lua进行模型的测试,但在实际训练过程中,根据提供的指导,应使用类似以下命令来开始特定部分(比如实体嵌入学习)的训练工作:mkdir $DATA_PATH/generated/ent_vecs CUDA_VISIBLE_DEVICES=0 th entities/learn_e2v/learn_a.lua -root_data_dir $DATA_PATH |& tee log_train_entity_vecs
配置文件介绍
此项目并未明确提供一个单独的配置文件,而是将配置参数分散在各个脚本之中,特别是在数据生成和模型训练脚本里。比如,在entities/learn_e2v/learn_a.lua中可以通过命令行参数指定优化器(optimization)、学习率(lr)、批次大小(batch_size)等关键配置项。这意味着用户需要通过调整脚本中的参数或传递给脚本的命令行参数来进行配置。
例如,设定最优参数可能涉及修改或在命令行中指定如下选项:
th entities/learn_e2v/learn_a.lua -optimization ADAGRAD -lr 0.3 -batch_size 500 ...
对于更复杂的应用场景或个性化设置,建议直接在相关脚本内部查找可调整的变量,并根据需要进行修改。
综上所述,虽然“配置文件”的概念在这个项目中不那么明显,但通过对脚本的直接控制和参数调整,用户可以灵活地配置和运行这个复杂的实体消歧系统。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355