Autofaiss 项目教程
2024-09-16 15:14:18作者:凤尚柏Louis
1. 项目介绍
Autofaiss 是一个开源项目,旨在自动创建 Faiss KNN 索引,并选择最优的相似性搜索参数。它通过高效的索引、二分搜索和启发式方法,能够在低内存(如15GB)下,在3小时内构建一个包含2亿个向量(1TB)的大型KNN索引,查询延迟在毫秒级(10ms)。
2. 项目快速启动
安装
首先,创建一个虚拟环境并安装依赖:
python -m venv venv/autofaiss_env
source venv/autofaiss_env/bin/activate
pip install -U pip
pip install autofaiss
使用示例
以下是一个简单的使用示例,使用内存中的numpy数组创建索引:
from autofaiss import build_index
import numpy as np
# 创建嵌入向量
embeddings = np.float32(np.random.rand(100, 512))
# 构建索引
index, index_infos = build_index(embeddings, save_on_disk=False)
# 查询
query = np.float32(np.random.rand(1, 512))
_, I = index.search(query, 1)
print(I)
3. 应用案例和最佳实践
应用案例
Autofaiss 可以应用于多种场景,如图像检索、文本相似性搜索等。以下是一个使用 Autofaiss 进行图像检索的示例:
from autofaiss import build_index
import numpy as np
# 假设我们有一组图像嵌入向量
image_embeddings = np.load('image_embeddings.npy')
# 构建索引
index, index_infos = build_index(image_embeddings, save_on_disk=True, index_path='image_index')
# 查询
query_embedding = np.float32(np.random.rand(1, 512))
_, I = index.search(query_embedding, 5)
print(I)
最佳实践
- 内存映射索引:当不需要快速搜索时间(>50ms)时,可以使用内存映射索引以最小化内存占用。
- 分布式构建:对于大规模数据集,可以使用 PySpark 进行分布式索引构建。
4. 典型生态项目
Autofaiss 可以与其他开源项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:
- Faiss:Autofaiss 基于 Faiss 构建,Faiss 是一个高效的相似性搜索库。
- PySpark:用于分布式计算和大规模数据处理。
- NumPy:用于处理和存储嵌入向量。
通过结合这些项目,Autofaiss 可以在更广泛的场景中发挥作用,如大规模数据集的相似性搜索和分布式计算。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~051CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3