基于Ax平台实现分布式神经架构搜索(NAS)的技术方案
2025-07-01 21:13:39作者:何举烈Damon
概述
在深度学习模型开发过程中,神经架构搜索(NAS)是一种自动化设计神经网络结构的技术。然而,NAS通常需要大量计算资源,这对单个用户或设备来说可能是个挑战。本文将探讨如何利用Facebook的Ax优化平台实现分布式NAS,通过多设备协作来加速搜索过程。
技术背景
Ax平台提供了强大的超参数优化功能,特别适合NAS任务。其核心优势包括:
- 支持多种采样策略(如Sobol序列和贝叶斯优化)
- 提供灵活的试验管理和结果跟踪
- 具备可扩展的并行化能力
分布式NAS实现方案
方案设计思路
传统NAS通常在单机上顺序执行,而分布式方案则可以将工作负载分散到多个设备上。具体实现可分为三个阶段:
- 初始化阶段:在多台设备上并行执行随机搜索
- 数据整合阶段:收集所有随机试验结果
- 优化阶段:基于整合数据执行集中式贝叶斯优化
关键技术实现
1. 预生成试验参数
使用Ax的Service API预生成初始化试验参数:
from ax.service.ax_client import AxClient
# 初始化Ax客户端
ax_client = AxClient()
# 预生成30个Sobol试验参数
sobol_parameters = []
for _ in range(30):
parameterization, trial_index = ax_client.get_next_trial()
sobol_parameters.append((trial_index, parameterization))
2. 分布式执行
将预生成的参数分配给不同设备执行。每个设备负责评估分配到的架构,并记录性能指标。
3. 结果整合
各设备完成评估后,将结果汇总到中央节点:
# 假设results_dict包含评估指标
ax_client.complete_trial(trial_index=trial_index, raw_data=results_dict)
4. 集中优化
整合所有随机试验结果后,切换到贝叶斯优化模式继续搜索:
# 继续获取优化建议
for _ in range(50): # 执行50轮优化
parameterization, trial_index = ax_client.get_next_trial()
# ...执行评估...
ax_client.complete_trial(trial_index, evaluation_results)
技术细节与注意事项
-
随机性控制:Ax使用的Sobol序列是准随机而非纯随机,能提供更好的空间覆盖性。不同随机种子会产生不同但都具备良好探索性的试验序列。
-
试验效率:虽然分布式随机搜索会损失一些试验效率,但通过后续集中优化可以弥补这一不足。
-
结果一致性:足够的优化轮次后,不同初始化通常会收敛到相似的架构。
-
替代方案:对于更复杂的分布式场景,可考虑使用Ax的Client模式或基于SQL的后端存储实现多客户端协作。
实际应用建议
- 根据可用计算资源合理分配初始化试验数量
- 确保各设备评估环境一致,避免引入额外变量
- 考虑使用检查点机制,防止意外中断导致数据丢失
- 对于大规模NAS,可结合SLURM等作业调度系统实现自动化分发
总结
通过Ax平台实现分布式NAS,研究人员可以充分利用实验室的多设备资源,显著加速架构搜索过程。这种混合式方法结合了分布式随机搜索的广泛探索和集中式贝叶斯优化的定向改进,在保证搜索质量的同时提高了资源利用率。该方案特别适合计算资源受限但拥有多台可用设备的研究团队。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K