Great Expectations项目:如何获取所有支持的期望类型及其参数
2025-05-22 17:37:55作者:齐冠琰
在数据质量验证领域,Great Expectations是一个功能强大的工具,它提供了丰富的期望(Expectations)来验证数据的各种属性。本文将深入探讨如何通过编程方式获取Great Expectations支持的所有期望类型及其参数,这对于构建自动化数据验证流程或开发自定义包装器非常有用。
期望类型的基本概念
在Great Expectations中,期望是指对数据质量的具体要求或断言。每个期望类型都针对数据的不同方面进行验证,例如检查列值是否唯一、是否符合特定格式、是否在某个范围内等。了解所有可用的期望类型及其参数对于设计全面的数据验证策略至关重要。
获取期望类型的两种方法
方法一:直接查看源代码实现
Great Expectations的所有核心期望实现都存储在项目的特定目录中。通过查看这些文件,可以了解每个期望的具体实现和所需参数。这种方法适合需要深入了解期望内部实现的开发者。
方法二:使用内置注册表API
Great Expectations提供了一个更加便捷的注册表API,可以动态获取所有已注册的期望实现:
from great_expectations.expectations.registry import (
list_registered_expectation_implementations,
get_expectation_impl
)
# 获取所有已注册的期望类型名称
expectation_names = list_registered_expectation_implementations()
# 遍历并获取每个期望的实现类
expectations = []
for name in expectation_names:
impl = get_expectation_impl(name)
expectations.append({
"name": name,
"params": list(impl._get_expectation_param_names())
})
这段代码会返回一个包含所有期望类型及其参数的列表,格式如下:
[
{
"name": "ExpectColumnDistinctValuesToBeInSet",
"params": ["column", "value_set"]
},
{
"name": "ExpectColumnDistinctValuesToContainSet",
"params": ["column", "value_set"]
}
]
参数信息的深入获取
除了基本的参数名称外,还可以通过期望类的_get_expectation_param_names()方法获取更详细的参数信息,包括:
- 必需参数和可选参数
- 参数的数据类型
- 参数的默认值
- 参数的描述信息
这些信息对于构建动态表单或自动化配置工具非常有价值。
实际应用场景
- 自动化测试生成:基于期望类型列表自动生成全面的数据质量测试套件
- 自定义UI开发:为数据质量验证构建可视化配置界面
- 文档生成:自动创建最新的期望类型参考文档
- 插件开发:在开发自定义期望时确保与现有期望的兼容性
最佳实践建议
- 缓存期望类型列表以提高性能,因为注册表查询可能会有一定开销
- 定期检查更新,因为Great Expectations会不断添加新的期望类型
- 考虑将期望类型信息与业务规则引擎集成,实现智能测试推荐
- 对于大型项目,可以基于期望类型构建元数据管理系统
通过掌握这些技术,开发者可以更高效地利用Great Expectations构建灵活、可扩展的数据质量保障体系。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873