【亲测免费】 使用OpenAI Whisper的说话人识别管道
项目简介
Speaker Diarization Using OpenAI Whisper是一个基于OpenAI Whisper的强大工具,用于识别音频文件中不同说话人的片段。通过整合Whisper自动语音识别(ASR)技术和Voice Activity Detection(VAD)、Speaker Embedding,本项目能够精确地定位每句话的说话者,即使在多说话人环境中也能有出色表现。感谢@m-bain提供的批处理Whisper推理和@mu4farooqi的标点符号对齐算法,使得这个管道功能更加完善。
如果这个项目对你有所帮助,请在GitHub上点赞支持!
技术剖析
该管道首先从音频中提取人声以提高说话人嵌入的准确性,然后使用Whisper进行转录。接着,使用WhisperX进行时间戳校正和平移对齐,减少因时间差导致的错误。随后,MarbleNet实现VAD并排除静音部分,TitaNet则用来提取说话人特征,最后结合时间戳确定每个词的说话者,并利用标点模型对时间进行微调,确保准确度。
应用场景
无论是在会议记录、播客分析、电话对话分割或是多角色的音频内容整理等场合,Speaker Diarization Using OpenAI Whisper都能大显身手。它能帮助你快速高效地将多说话人音频拆分成独立的部分,便于后续的分析和处理。
项目特点
- 集成先进技术:结合Whisper的ASR、VAD以及Speaker Embedding技术,提供全面的说话人识别解决方案。
- 易用性:只需一行命令即可对音频文件进行处理,且提供多个可选参数以适应不同的需求。
- 并行处理:对于资源充足的系统,提供并行处理选项,提高了处理效率。
- 语言选择:支持手动指定语言,提升在语言检测失败情况下的性能。
安装与使用
首先确保安装了PyTorch、FFmpeg和Cython,之后按照以下步骤安装依赖:
pip install cython torch
或
pip install torch
sudo apt update && sudo apt install cython3
安装FFmpeg:
# Ubuntu 或 Debian
sudo apt update && sudo apt install ffmpeg
# Arch Linux
sudo pacman -S ffmpeg
# MacOS(Homebrew)
brew install ffmpeg
# Windows(Chocolatey)
choco install ffmpeg
# Windows(Scoop)
scoop install ffmpeg
最后,运行pip install -r requirements.txt来安装剩余的依赖。要处理音频文件,只需执行:
python diarize.py -a AUDIO_FILE_NAME
或者如果你的系统有足够的GPU内存,可以尝试使用diarize_parallel.py进行并行处理。
未来计划
当前项目正在不断优化中,未来可能的改进包括处理重叠说话人的策略,以及增加最大句子长度限制等功能。
致谢
特别感谢@adamjonas对此项目的支持,以及OpenAI的Whisper、Faster Whisper、Nvidia NeMo和Facebook的Demucs的优秀工作,这些都为该项目的发展奠定了坚实基础。
如有任何问题或建议,欢迎提交issue,我们非常期待你的反馈!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00