DDSP歌唱合成器实现指南
项目介绍
本项目DDSP-Singing-Vocoders是基于ISMR'22论文《基于DDSP的歌唱编码器:一种新的减法合成器及其全面评估》的官方实现。它由YatingMusic维护,引入了一种名为SawSing的新颖歌唱编码器。SawSing通过滤波锯齿波信号源来合成歌唱声中的谐波部分,设计用于有效地利用有限资源(如仅需单个GPU和3小时训练数据)生成高质量的歌唱合成音频。项目提供了多种不同的DDSP歌唱编码模型,并展示了即使在极端情况下(仅有3分钟录音和3小时的训练时间),也能取得令人满意的结果。
项目快速启动
环境配置
首先,确保你的开发环境已经安装了Python以及必要的依赖项。你可以通过运行以下命令来安装所需的库:
pip install -r requirements.txt
开始训练
以SawSing为例,进行从零开始的训练,你需要修改配置文件config/sawsinsub.yaml,然后执行以下命令:
python main.py --config ./configs/sawsinsub.yaml --stage training --model SawSinSub
这将使用指定的配置和模型类型开始训练过程。
验证与评估
完成训练后,你可以使用下面的命令验证模型性能:
python main.py --config ./configs/sawsinsub.yaml --stage validation --model SawSinSub --model_ckpt ./exp/f1-full/sawsinsub-256/ckpts/vocoder_27740_700_params.pt
生成合成音频
为了从梅尔频谱图合成音频,需要设置好输入目录和输出目录,如:
python main.py --config ./configs/sawsinsub.yaml --stage inference --model SawSinSub --model_ckpt ./exp/f1-full/sawsinsub-256/ckpts/vocoder_27740_700_params.pt --input_dir /path/to/mel --output_dir /test_gen
确保替换/path/to/mel为你存放梅尔频谱图的实际路径。
应用案例与最佳实践
在实际应用中,开发者可以利用SawSing在语音合成、音乐创作软件或互动娱乐产品中,快速生成个性化的歌唱音频。最佳实践包括精心选择训练数据,优化配置文件参数,以及利用后处理步骤(如去除嗡嗡声的Voiced/Unvoiced掩码技术)提升最终合成质量。
典型生态项目
虽然本项目本身就是一个典型的围绕歌唱合成的生态项目,但开发者可以在诸如音乐制作软件插件、在线唱歌应用或者自定义歌声生成服务等场景下,集成这些编码器,推动音乐创造性和个性化体验的发展。社区成员也可能会基于此项目开发更多工具和库,以扩展其功能,比如用户界面友好的前端应用,或是与其他音频处理库的集成示例。
这个教程提供了一个基础框架,让开发者能够迅速上手并开始利用DDSP-Singing-Vocoders项目进行歌唱音频的合成实验。随着对项目更深入的探索,你将发现更多定制化和优化的可能性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00