DDSP唱歌合成器实现指南:YatingMusic/ddsp-singing-vocoders
2024-09-27 17:47:53作者:魏献源Searcher
本指南将带领您深入了解YatingMusic/ddsp-singing-vocoders这个开源项目,该项目是ISMR'22论文"SawSing及其全面评估"的官方实现,旨在提供一种基于减法合成的新型唱歌合成器。下面我们将详细解析其目录结构、启动文件以及配置文件。
1. 目录结构及介绍
项目的主要结构设计如下:
configs: 包含不同的模型配置文件,用于指定训练、验证和推理时的各种参数设置。data: 提供示例数据或指向数据集的说明文件,具体数据需参照项目指引获取。ddsp: 包含DDSP相关的实现代码,这是合成的核心部分。docs: 文档资料,可能包括项目简介、API说明等。exp: 实验记录,保存训练模型的检查点(checkpoints)和其他实验数据。logger: 日志记录相关,帮助开发者追踪程序运行状态。postprocessing: 后处理脚本,如SawSing中的去噪声处理。main.py: 核心脚本,执行训练、验证和推理操作的入口。preprocess.py: 数据预处理脚本,用于准备输入到模型的数据格式。requirements.txt: 项目依赖库列表,用于安装必需的Python包。LICENSE: 许可证文件,表明项目遵循AGPL-3.0协议。README.md: 项目快速入门和概览信息。
2. 项目的启动文件介绍
主要启动文件:main.py
- 功能:该文件是项目的控制中心,支持多种模式(训练、验证、推断)的操作。
- 使用方式:
- 训练:
python main.py --config configs/sawsinsub.yaml --stage training --model SawSinSub - 验证:
python main.py --config configs/sawsinsub.yaml --stage validation --model SawSinSub --model_ckpt /exp/f1-full/sawsinsub-256/ckpts/vocoder_27740_700_params.pt - 推断:
python main.py --config configs/sawsinsub.yaml --stage inference --model SawSinSub --model_ckpt /path/to/checkpoint.pt --input_dir /path/to/mels --output_dir /path/to/output
- 训练:
通过调整命令行参数,可以灵活地进行不同阶段的操作,并指定不同的模型和配置。
3. 项目的配置文件介绍
配置文件位于configs目录下,以.yaml格式存储,比如config/sawsinsub.yaml。
- 配置内容通常包括模型参数、训练超参数(如批次大小、学习率)、数据路径、后处理设置等。
- 关键参数解释:
- 模型选择(
model): 指定使用的模型类型,例如SawSinSub。 - 训练设置(
training): 包括总迭代次数、是否使用混合精度训练等。 - 数据加载器(
dataset): 定义数据批处理大小、数据预处理细节等。 - 优化器设置(
optimizer): 指定优化算法和相关参数。
- 模型选择(
每种不同的模型会有对应的配置文件,用户可以根据需要修改这些配置来定制化训练流程。
以上就是对YatingMusic/ddsp-singing-vocoders项目的基本指南,确保在开始之前已阅读README.md并安装了所有必要的依赖,这样才能顺利进行项目开发和实验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
243
316
Ascend Extension for PyTorch
Python
194
212