首页
/ ONNX Lab 教程:从入门到实践

ONNX Lab 教程:从入门到实践

2024-09-11 20:00:49作者:劳婵绚Shirley

项目介绍

ONNX Lab 是一个示例集合,专注于展示如何将模型导出到 ONNX 格式以及如何利用 ONNX 运行时来使用这些模型。ONNX(Open Neural Network Exchange)作为一个开放标准,促进了机器学习模型在不同的框架、工具和硬件之间的互操作性。此项目由 Keith Pijanowski 创建,旨在提供给开发者直观的手把手教学,帮助他们更好地理解和运用 ONNX 技术栈。

项目快速启动

要快速启动并运行 ONNX Lab 中的例子,首先确保你的开发环境中安装了必要的依赖,特别是 Python 和相关库如 TensorFlow 或 PyTorch,以及 ONNX 本身。以下是基本步骤:

  1. 克隆仓库:

    git clone https://github.com/keithpij/onnx-lab.git
    
  2. 安装 ONNX 及其依赖:

    pip install onnx onnxruntime
    

    根据你的需求,可能还需要安装特定的深度学习框架的版本。

  3. 运行示例: ONNX Lab 包含多个目录,每个目录对应于特定的模型或功能演示。以下是如何运行其中一个简单示例的基本步骤,假设你想尝试一个基础的模型导出和加载流程:

    # 导入必要的库
    import onnx
    from onnx_example.model_definition import define_model
    
    # 定义或加载模型
    model = define_model()
    
    # 导出模型至ONNX格式
    onnx.save(model, 'my_model.onnx')
    
    # 使用ONNX Runtime加载模型
    import onnxruntime
    session = onnxruntime.InferenceSession('my_model.onnx')
    
    # 输入数据示例及推理
    # 假设你需要特定的输入形状和类型,这里仅为示意
    input_data = ...  # 准备你的输入数据
    output = session.run(None, {'input': input_data})
    print("Output:", output)
    

请注意,具体的代码细节应参照 ONNX Lab 中的实际脚本,以上仅为一个简化示例。

应用案例和最佳实践

ONNX Lab 提供了多种应用场景的实例,例如:

  • 将训练好的 TensorFlow 或 PyTorch 模型转换为 ONNX 格式,优化生产部署。
  • 利用 ONNX Runtime 在不同平台上高效运行模型,包括边缘设备。
  • 实现模型的微调或调整,结合 ONNX 的灵活性进行定制化处理。

最佳实践中,关键在于理解模型的输入输出结构,选择正确的转换策略,并确保转换前后模型的一致性和性能。

典型生态项目

ONNX 生态远远超出了 ONNX Lab,它涵盖了一系列工具和框架,支持模型的无缝迁移和扩展。一些典型生态项目包括:

  • ONNX Runtime: 高性能的模型执行引擎,支持多平台部署。
  • Model Optimization Toolkit: 用于优化ONNX模型,提升推理速度和减少内存占用。
  • Variational Model Compression: ONNX 支持的模型压缩技术,以适应资源受限环境。
  • 各种深度学习框架插件: 如 TensorFlow, PyTorch 的 ONNX 导出支持,使得几乎所有的现代模型都能被转化为ONNX格式。

通过深入研究 ONNX Lab,开发者可以掌握将模型标准化和跨平台部署的核心技能,促进AI应用的快速迭代和广泛传播。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
603
114
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
55
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
29
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
77
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
112
13
yolo-onnx-javayolo-onnx-java
Java开发视觉智能识别项目 纯java 调用 yolo onnx 模型 AI 视频 识别 支持 yolov5 yolov8 yolov7 yolov9 yolov10,yolov11,paddle ,obb,seg ,detection,包含 预处理 和 后处理 。java 目标检测 目标识别,可集成 rtsp rtmp,车牌识别,人脸识别,跌倒识别,打架识别,车牌识别,人脸识别 等
Java
7
0
cjoycjoy
a fast,lightweight and joy web framework
Cangjie
10
2
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
7
0
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25