Supervision项目中的Detections元数据功能解析
2025-05-06 06:04:12作者:庞队千Virginia
背景介绍
Supervision是一个功能强大的计算机视觉库,其中的Detections类用于统一存储各种模型(如目标检测、分割等)的输出结果。在最新版本中,开发团队为Detections类新增了metadata字段,用于存储与整个检测集合相关的全局信息。
Detections类结构演变
原始的Detections类设计如下:
@dataclass
class Detections:
xyxy: np.ndarray
mask: Optional[np.ndarray] = None
confidence: Optional[np.ndarray] = None
class_id: Optional[np.ndarray] = None
tracker_id: Optional[np.ndarray] = None
data: Dict[str, Union[np.ndarray, List]] = field(default_factory=dict)
新增metadata字段后变为:
@dataclass
class Detections:
xyxy: np.ndarray
mask: Optional[np.ndarray] = None
confidence: Optional[np.ndarray] = None
class_id: Optional[np.ndarray] = None
tracker_id: Optional[np.ndarray] = None
data: Dict[str, Union[np.ndarray, List]] = field(default_factory=dict)
metadata: Dict[str, Any] = field(default_factory=dict)
元数据功能设计要点
元数据与数据的区别
在Detections类中,data字段用于存储与每个检测对象相关的信息(长度为N的数组),而metadata则用于存储与整个检测集合相关的全局信息。例如:
- data可能存储每个检测框的颜色信息
- metadata可能存储视频来源或相机参数等全局信息
关键方法实现
- 相等性比较:
__eq__方法现在需要比较metadata字段 - 空检测判断:
is_empty方法保持原逻辑,仅检查检测结果而不考虑metadata - 迭代操作:
__iter__方法不返回metadata内容 - 合并操作:
merge方法需要处理metadata合并逻辑 - 切片操作:
__getitem__方法需要保留metadata
技术挑战与解决方案
合并操作的元数据处理
当合并多个Detections对象时,metadata的处理遵循以下原则:
- 保留metadata即使所有被合并的检测都是空的
- 仅当所有被合并对象的metadata键值完全相同时才进行合并
- 使用专门的
merge_metadata函数处理合并逻辑
空检测的特殊处理
由于历史原因,Detections.empty()和Detections.is_empty()有特殊行为。在视频处理场景中,同一模型在不同帧可能有不同的字段定义(array/None)。因此:
- 空检测主要通过is_empty()方法判断
- metadata的存在不影响空检测的判断
实际应用场景
metadata功能为以下场景提供了便利:
- 视频分析:存储视频文件名或时间戳
- 多相机系统:记录相机参数或位置信息
- 实验记录:保存环境参数或模型配置
- 数据追踪:添加数据来源或处理历史
总结
Supervision项目中Detections类的metadata功能为计算机视觉任务提供了更灵活的数据存储方式,使得开发者能够更好地组织和追踪检测结果的相关信息。这一改进保持了原有API的简洁性,同时扩展了应用场景,是计算机视觉数据处理流程的重要优化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
220
88
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
281
315
React Native鸿蒙化仓库
JavaScript
286
335
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
436
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19