Supervision项目中的Detections元数据功能解析
2025-05-06 11:27:15作者:庞队千Virginia
背景介绍
Supervision是一个功能强大的计算机视觉库,其中的Detections类用于统一存储各种模型(如目标检测、分割等)的输出结果。在最新版本中,开发团队为Detections类新增了metadata字段,用于存储与整个检测集合相关的全局信息。
Detections类结构演变
原始的Detections类设计如下:
@dataclass
class Detections:
xyxy: np.ndarray
mask: Optional[np.ndarray] = None
confidence: Optional[np.ndarray] = None
class_id: Optional[np.ndarray] = None
tracker_id: Optional[np.ndarray] = None
data: Dict[str, Union[np.ndarray, List]] = field(default_factory=dict)
新增metadata字段后变为:
@dataclass
class Detections:
xyxy: np.ndarray
mask: Optional[np.ndarray] = None
confidence: Optional[np.ndarray] = None
class_id: Optional[np.ndarray] = None
tracker_id: Optional[np.ndarray] = None
data: Dict[str, Union[np.ndarray, List]] = field(default_factory=dict)
metadata: Dict[str, Any] = field(default_factory=dict)
元数据功能设计要点
元数据与数据的区别
在Detections类中,data字段用于存储与每个检测对象相关的信息(长度为N的数组),而metadata则用于存储与整个检测集合相关的全局信息。例如:
- data可能存储每个检测框的颜色信息
- metadata可能存储视频来源或相机参数等全局信息
关键方法实现
- 相等性比较:
__eq__
方法现在需要比较metadata字段 - 空检测判断:
is_empty
方法保持原逻辑,仅检查检测结果而不考虑metadata - 迭代操作:
__iter__
方法不返回metadata内容 - 合并操作:
merge
方法需要处理metadata合并逻辑 - 切片操作:
__getitem__
方法需要保留metadata
技术挑战与解决方案
合并操作的元数据处理
当合并多个Detections对象时,metadata的处理遵循以下原则:
- 保留metadata即使所有被合并的检测都是空的
- 仅当所有被合并对象的metadata键值完全相同时才进行合并
- 使用专门的
merge_metadata
函数处理合并逻辑
空检测的特殊处理
由于历史原因,Detections.empty()和Detections.is_empty()有特殊行为。在视频处理场景中,同一模型在不同帧可能有不同的字段定义(array/None)。因此:
- 空检测主要通过is_empty()方法判断
- metadata的存在不影响空检测的判断
实际应用场景
metadata功能为以下场景提供了便利:
- 视频分析:存储视频文件名或时间戳
- 多相机系统:记录相机参数或位置信息
- 实验记录:保存环境参数或模型配置
- 数据追踪:添加数据来源或处理历史
总结
Supervision项目中Detections类的metadata功能为计算机视觉任务提供了更灵活的数据存储方式,使得开发者能够更好地组织和追踪检测结果的相关信息。这一改进保持了原有API的简洁性,同时扩展了应用场景,是计算机视觉数据处理流程的重要优化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K