imylu 项目教程
2024-09-18 07:20:24作者:贡沫苏Truman
1. 项目介绍
imylu 是一个纯 Python 实现的机器学习算法库,包含了多种流行的机器学习算法的实现。该项目特别推荐给那些希望通过阅读 Python 代码来学习算法细节的人,而不是通过大量的数学公式。imylu 兼容 Python 3.6-3.7 版本。
主要特点
- 纯 Python 实现:所有算法均使用纯 Python 代码实现。
- 算法丰富:包含了多种流行的机器学习算法。
- 学习友好:适合希望通过代码学习算法细节的用户。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,你可以通过以下命令安装 imylu:
pip install git+https://github.com/tushushu/imylu.git
快速示例
以下是一个简单的示例,展示如何使用 imylu 中的 GBDT 分类器:
from imylu.utils import load_breast_cancer
from imylu.ensemble.gbdt_classifier import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
# 加载数据
data, label = load_breast_cancer()
data_train, data_test, label_train, label_test = train_test_split(data, label, random_state=20)
# 初始化并训练模型
clf = GradientBoostingClassifier()
clf.fit(data_train, label_train, n_estimators=2, learning_rate=0.8, max_depth=3, min_samples_split=2)
# 预测并评估
predictions = clf.predict(data_test)
accuracy = (predictions == label_test).mean()
print(f"模型准确率: {accuracy * 100:.2f}%")
3. 应用案例和最佳实践
应用案例
imylu 可以应用于各种机器学习任务,如分类、回归等。以下是一个使用 imylu 进行乳腺癌数据分类的案例:
from imylu.utils import load_breast_cancer
from imylu.ensemble.gbdt_classifier import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据
data, label = load_breast_cancer()
data_train, data_test, label_train, label_test = train_test_split(data, label, random_state=20)
# 初始化并训练模型
clf = GradientBoostingClassifier()
clf.fit(data_train, label_train, n_estimators=2, learning_rate=0.8, max_depth=3, min_samples_split=2)
# 预测并评估
predictions = clf.predict(data_test)
accuracy = accuracy_score(label_test, predictions)
print(f"模型准确率: {accuracy * 100:.2f}%")
最佳实践
- 参数调优:在实际应用中,建议对
n_estimators、learning_rate、max_depth等参数进行调优,以获得更好的模型性能。 - 数据预处理:在使用 imylu 进行模型训练之前,建议对数据进行必要的预处理,如标准化、归一化等。
4. 典型生态项目
imylu 作为一个纯 Python 实现的机器学习库,可以与其他 Python 生态系统中的项目无缝集成。以下是一些典型的生态项目:
- NumPy:用于数值计算的基础库。
- SciPy:提供科学计算和工程计算的工具。
- Pandas:用于数据处理和分析的库。
- scikit-learn:提供丰富的机器学习算法和工具。
通过这些生态项目的结合,imylu 可以更好地应用于各种复杂的机器学习任务中。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19