MicroK8s配置ECR私有镜像仓库认证的最佳实践
背景介绍
在使用MicroK8s部署容器化应用时,从AWS ECR(Elastic Container Registry)私有仓库拉取镜像是一个常见需求。由于ECR采用临时认证机制,传统的静态凭证方式不再适用,需要通过kubelet的镜像凭证提供程序(Image Credential Provider)功能实现动态认证。
核心配置步骤
1. 准备凭证提供程序二进制文件
首先需要获取ECR凭证提供程序的二进制文件。该程序由Kubernetes社区维护,负责与AWS API交互并获取临时凭证。建议从官方发布的稳定版本获取对应架构的二进制文件。
2. 配置凭证提供程序
在MicroK8s节点上创建配置文件/var/snap/microk8s/common/credential-provider-config.yaml,内容如下:
apiVersion: kubelet.config.k8s.io/v1
kind: CredentialProviderConfig
providers:
- name: ecr-credential-provider
apiVersion: credentialprovider.kubelet.k8s.io/v1
matchImages:
- "*.dkr.ecr.*.amazonaws.com"
defaultCacheDuration: 12h
此配置告诉kubelet,当遇到匹配ECR域名模式的镜像时,使用指定的凭证提供程序获取认证信息。
3. 修改kubelet参数
编辑MicroK8s的kubelet配置文件/var/snap/microk8s/current/args/kubelet,添加以下参数:
--image-credential-provider-config=${SNAP_COMMON}/credential-provider-config.yaml
--image-credential-provider-bin-dir=/usr/local/bin/
注意:最佳实践是将二进制文件放在MicroK8s的${SNAP_COMMON}目录下,如${SNAP_COMMON}/bin,并相应调整--image-credential-provider-bin-dir参数指向该位置。
4. 测试凭证提供程序
在MicroK8s环境中测试凭证提供程序是否正常工作:
sudo snap run --shell microk8s.daemon-kubelite
echo '{
"apiVersion": "credentialprovider.kubelet.k8s.io/v1",
"kind": "CredentialProviderRequest",
"image": "XXXXXXXXXXX.dkr.ecr.XXXX.amazonaws.com/repository/image"
}' | ${SNAP_COMMON}/bin/ecr-credential-provider
成功执行应返回包含临时凭证的JSON响应。
5. 重启MicroK8s服务
应用配置后,需要重启MicroK8s服务使更改生效:
sudo snap restart microk8s
认证方式选择
凭证提供程序支持两种AWS认证方式:
-
IAM实例配置文件:适用于运行在EC2实例上的MicroK8s节点,通过实例关联的IAM角色自动获取权限。
-
访问密钥:通过传统的AWS_ACCESS_KEY_ID和AWS_SECRET_ACCESS_KEY环境变量或配置文件提供凭证。
常见问题排查
如果配置后仍无法拉取镜像,建议检查以下方面:
- 确保凭证提供程序二进制具有可执行权限
- 验证kubelet日志中是否有相关错误信息
- 确认AWS权限设置正确,具有ECR拉取权限
- 检查凭证提供程序配置文件路径是否正确
总结
通过合理配置MicroK8s的kubelet凭证提供程序,可以实现安全、自动化的ECR私有镜像拉取。这种方法相比静态凭证更安全,且能自动处理AWS临时凭证的刷新,是生产环境推荐的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00