StarDist 项目安装与使用指南
2024-09-13 04:04:10作者:吴年前Myrtle
1. 项目介绍
StarDist 是一个基于深度学习的细胞/核检测和分割方法,适用于 2D 和 3D 显微镜图像。它特别适用于密集排列的对象,如细胞核。StarDist 的核心思想是使用星形凸多边形来表示对象的形状,从而实现高效的检测和分割。
StarDist 提供了 Python 实现,并且支持在 ImageJ/Fiji、Napari、QuPath 和 Icy 等图像处理软件中使用。项目的主要贡献者包括 Uwe Schmidt、Martin Weigert 等人。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,按照以下步骤安装 StarDist:
-
安装 TensorFlow: StarDist 依赖于 TensorFlow,因此需要先安装 TensorFlow。你可以选择安装 TensorFlow 1 或 TensorFlow 2。
# 安装 TensorFlow 2 pip install tensorflow # 或者安装 TensorFlow 1 pip install tensorflow==1.15 -
安装 StarDist: 根据你安装的 TensorFlow 版本,选择相应的 StarDist 安装命令。
# 如果安装了 TensorFlow 2 pip install stardist # 如果安装了 TensorFlow 1 pip install "stardist[tf1]"
2.2 使用示例
以下是一个简单的示例,展示如何使用 StarDist 进行 2D 图像的细胞核检测和分割。
from stardist.models import StarDist2D
from stardist.data import test_image_nuclei_2d
from stardist.plot import render_label
from csbdeep.utils import normalize
import matplotlib.pyplot as plt
# 加载预训练模型
model = StarDist2D.from_pretrained('2D_versatile_fluo')
# 加载测试图像
img = test_image_nuclei_2d()
# 进行预测
labels, _ = model.predict_instances(normalize(img))
# 可视化结果
plt.subplot(1, 2, 1)
plt.imshow(img, cmap="gray")
plt.axis("off")
plt.title("输入图像")
plt.subplot(1, 2, 2)
plt.imshow(render_label(labels, img=img))
plt.axis("off")
plt.title("预测结果")
plt.show()
3. 应用案例和最佳实践
3.1 应用案例
StarDist 广泛应用于生物医学图像分析领域,特别是在细胞核检测和分割任务中。以下是一些典型的应用案例:
- 细胞核检测:在荧光显微镜图像中自动检测和分割细胞核。
- 组织病理学分析:在组织病理学图像中进行细胞核实例分割和分类。
- 时间序列分析:在时间序列图像中跟踪细胞核的运动和变化。
3.2 最佳实践
- 数据准备:确保训练数据的质量和多样性,使用高质量的标注数据进行模型训练。
- 模型选择:根据具体的应用场景选择合适的预训练模型,或者根据需要训练自定义模型。
- 参数调优:根据图像的特性和任务需求,调整模型的参数以获得最佳性能。
4. 典型生态项目
StarDist 作为一个开源项目,与其他图像处理和分析工具紧密集成,形成了丰富的生态系统。以下是一些典型的生态项目:
- ImageJ/Fiji:提供了 StarDist 的插件,可以直接在 ImageJ/Fiji 中使用 StarDist 进行细胞核检测和分割。
- Napari:一个基于 Python 的多维图像查看器,支持 StarDist 插件,适用于 2D 和 3D 图像分析。
- QuPath:一个开源的病理学图像分析工具,支持 StarDist 2D 模型,用于细胞核检测和分割。
- Icy:一个开源的生物图像分析平台,提供了 StarDist 2D 插件,适用于细胞核检测任务。
通过这些生态项目,StarDist 可以与现有的图像处理工作流无缝集成,提供强大的细胞核检测和分割功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869