StarDist 项目安装与使用指南
2024-09-13 04:41:46作者:吴年前Myrtle
1. 项目介绍
StarDist 是一个基于深度学习的细胞/核检测和分割方法,适用于 2D 和 3D 显微镜图像。它特别适用于密集排列的对象,如细胞核。StarDist 的核心思想是使用星形凸多边形来表示对象的形状,从而实现高效的检测和分割。
StarDist 提供了 Python 实现,并且支持在 ImageJ/Fiji、Napari、QuPath 和 Icy 等图像处理软件中使用。项目的主要贡献者包括 Uwe Schmidt、Martin Weigert 等人。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,按照以下步骤安装 StarDist:
-
安装 TensorFlow: StarDist 依赖于 TensorFlow,因此需要先安装 TensorFlow。你可以选择安装 TensorFlow 1 或 TensorFlow 2。
# 安装 TensorFlow 2 pip install tensorflow # 或者安装 TensorFlow 1 pip install tensorflow==1.15 -
安装 StarDist: 根据你安装的 TensorFlow 版本,选择相应的 StarDist 安装命令。
# 如果安装了 TensorFlow 2 pip install stardist # 如果安装了 TensorFlow 1 pip install "stardist[tf1]"
2.2 使用示例
以下是一个简单的示例,展示如何使用 StarDist 进行 2D 图像的细胞核检测和分割。
from stardist.models import StarDist2D
from stardist.data import test_image_nuclei_2d
from stardist.plot import render_label
from csbdeep.utils import normalize
import matplotlib.pyplot as plt
# 加载预训练模型
model = StarDist2D.from_pretrained('2D_versatile_fluo')
# 加载测试图像
img = test_image_nuclei_2d()
# 进行预测
labels, _ = model.predict_instances(normalize(img))
# 可视化结果
plt.subplot(1, 2, 1)
plt.imshow(img, cmap="gray")
plt.axis("off")
plt.title("输入图像")
plt.subplot(1, 2, 2)
plt.imshow(render_label(labels, img=img))
plt.axis("off")
plt.title("预测结果")
plt.show()
3. 应用案例和最佳实践
3.1 应用案例
StarDist 广泛应用于生物医学图像分析领域,特别是在细胞核检测和分割任务中。以下是一些典型的应用案例:
- 细胞核检测:在荧光显微镜图像中自动检测和分割细胞核。
- 组织病理学分析:在组织病理学图像中进行细胞核实例分割和分类。
- 时间序列分析:在时间序列图像中跟踪细胞核的运动和变化。
3.2 最佳实践
- 数据准备:确保训练数据的质量和多样性,使用高质量的标注数据进行模型训练。
- 模型选择:根据具体的应用场景选择合适的预训练模型,或者根据需要训练自定义模型。
- 参数调优:根据图像的特性和任务需求,调整模型的参数以获得最佳性能。
4. 典型生态项目
StarDist 作为一个开源项目,与其他图像处理和分析工具紧密集成,形成了丰富的生态系统。以下是一些典型的生态项目:
- ImageJ/Fiji:提供了 StarDist 的插件,可以直接在 ImageJ/Fiji 中使用 StarDist 进行细胞核检测和分割。
- Napari:一个基于 Python 的多维图像查看器,支持 StarDist 插件,适用于 2D 和 3D 图像分析。
- QuPath:一个开源的病理学图像分析工具,支持 StarDist 2D 模型,用于细胞核检测和分割。
- Icy:一个开源的生物图像分析平台,提供了 StarDist 2D 插件,适用于细胞核检测任务。
通过这些生态项目,StarDist 可以与现有的图像处理工作流无缝集成,提供强大的细胞核检测和分割功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111