StarDist 项目安装与使用指南
2024-09-13 02:52:07作者:吴年前Myrtle
1. 项目介绍
StarDist 是一个基于深度学习的细胞/核检测和分割方法,适用于 2D 和 3D 显微镜图像。它特别适用于密集排列的对象,如细胞核。StarDist 的核心思想是使用星形凸多边形来表示对象的形状,从而实现高效的检测和分割。
StarDist 提供了 Python 实现,并且支持在 ImageJ/Fiji、Napari、QuPath 和 Icy 等图像处理软件中使用。项目的主要贡献者包括 Uwe Schmidt、Martin Weigert 等人。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,按照以下步骤安装 StarDist:
-
安装 TensorFlow: StarDist 依赖于 TensorFlow,因此需要先安装 TensorFlow。你可以选择安装 TensorFlow 1 或 TensorFlow 2。
# 安装 TensorFlow 2 pip install tensorflow # 或者安装 TensorFlow 1 pip install tensorflow==1.15
-
安装 StarDist: 根据你安装的 TensorFlow 版本,选择相应的 StarDist 安装命令。
# 如果安装了 TensorFlow 2 pip install stardist # 如果安装了 TensorFlow 1 pip install "stardist[tf1]"
2.2 使用示例
以下是一个简单的示例,展示如何使用 StarDist 进行 2D 图像的细胞核检测和分割。
from stardist.models import StarDist2D
from stardist.data import test_image_nuclei_2d
from stardist.plot import render_label
from csbdeep.utils import normalize
import matplotlib.pyplot as plt
# 加载预训练模型
model = StarDist2D.from_pretrained('2D_versatile_fluo')
# 加载测试图像
img = test_image_nuclei_2d()
# 进行预测
labels, _ = model.predict_instances(normalize(img))
# 可视化结果
plt.subplot(1, 2, 1)
plt.imshow(img, cmap="gray")
plt.axis("off")
plt.title("输入图像")
plt.subplot(1, 2, 2)
plt.imshow(render_label(labels, img=img))
plt.axis("off")
plt.title("预测结果")
plt.show()
3. 应用案例和最佳实践
3.1 应用案例
StarDist 广泛应用于生物医学图像分析领域,特别是在细胞核检测和分割任务中。以下是一些典型的应用案例:
- 细胞核检测:在荧光显微镜图像中自动检测和分割细胞核。
- 组织病理学分析:在组织病理学图像中进行细胞核实例分割和分类。
- 时间序列分析:在时间序列图像中跟踪细胞核的运动和变化。
3.2 最佳实践
- 数据准备:确保训练数据的质量和多样性,使用高质量的标注数据进行模型训练。
- 模型选择:根据具体的应用场景选择合适的预训练模型,或者根据需要训练自定义模型。
- 参数调优:根据图像的特性和任务需求,调整模型的参数以获得最佳性能。
4. 典型生态项目
StarDist 作为一个开源项目,与其他图像处理和分析工具紧密集成,形成了丰富的生态系统。以下是一些典型的生态项目:
- ImageJ/Fiji:提供了 StarDist 的插件,可以直接在 ImageJ/Fiji 中使用 StarDist 进行细胞核检测和分割。
- Napari:一个基于 Python 的多维图像查看器,支持 StarDist 插件,适用于 2D 和 3D 图像分析。
- QuPath:一个开源的病理学图像分析工具,支持 StarDist 2D 模型,用于细胞核检测和分割。
- Icy:一个开源的生物图像分析平台,提供了 StarDist 2D 插件,适用于细胞核检测任务。
通过这些生态项目,StarDist 可以与现有的图像处理工作流无缝集成,提供强大的细胞核检测和分割功能。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287