首页
/ 布局与分割:脑肿瘤分割框架(基于BraTS 2017挑战)

布局与分割:脑肿瘤分割框架(基于BraTS 2017挑战)

2024-09-24 19:41:40作者:邵娇湘

项目介绍

本项目提供了一套用于脑肿瘤分割的源码及预训练模型,专为2017年MICCAI BraTS挑战设计,并在该比赛中荣获第二名。方法详细阐述于相关论文,并已适应处理2015年的BraTS数据集。实现基础是NiftyNet和TensorFlow,利用NiftyNet进行网络定义,保留了轻量级与可扩展性。项目还包括一个更充分利用NiftyNet进行脑肿瘤分割的示例链接:NiftyNet BRATS17 Demos

项目快速启动

环境需求

  • 推荐使用具有至少6GB内存的CUDA兼容GPU来训练模型。
  • 对于仅测试模型的情况,可能不需要CUDA兼容GPU。
  • TensorFlow版本需为v1.4.0或以上。
  • NiftyNet版本需为v0.2.0或以上。
  • 获取BraTS 2015或2017数据集,可以从官方网站下载。

快速运行步骤

  1. 安装依赖
    安装TensorFlow和NiftyNet,遵循各自官网的安装指南。

  2. 准备数据
    下载BraTS数据集,解压训练和测试文件,设置正确的数据路径。

  3. 使用预训练模型

    • 分割BraTS 2015数据:python test.py config15/test_all_class.txt
    • 分割BraTS 2017数据:python test.py config17/test_all_class.txt

应用案例与最佳实践

  • 在实际应用中,可以直接利用提供的预训练模型进行脑肿瘤的自动分割,减少放射科医生的工作量。
  • 调整配置文件(config15/config17/下的txt文件)以应对特定的分析需求,如调整模型参数或选择不同的视图方向进行训练。
  • 利用util/rename_variables.py脚本,可以跨视图共享权重加速训练过程,这是最佳实践中提高效率的一种策略。

典型生态项目

虽然此项目本身构建了一个自包含的解决方案,但其生态的一部分也包括了NiftyNet平台的其他贡献。开发者和研究人员可以在NiftyNet上找到更多的模型和工具,这些资源支持医学影像处理的广泛场景,包括但不限于更多的医学图像分割任务、配准等,形成一个更加庞大的生态系统,促进了医疗影像AI的发展。


以上是关于“布局与分割:脑肿瘤分割框架”的简要介绍与快速入门指南,通过这些步骤,您可以快速开始对脑肿瘤数据进行分割研究。记住,在使用项目中的任何资源时,应当恰当引用相关的学术文献。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5