布局与分割:脑肿瘤分割框架(基于BraTS 2017挑战)
2024-09-24 12:44:00作者:邵娇湘
项目介绍
本项目提供了一套用于脑肿瘤分割的源码及预训练模型,专为2017年MICCAI BraTS挑战设计,并在该比赛中荣获第二名。方法详细阐述于相关论文,并已适应处理2015年的BraTS数据集。实现基础是NiftyNet和TensorFlow,利用NiftyNet进行网络定义,保留了轻量级与可扩展性。项目还包括一个更充分利用NiftyNet进行脑肿瘤分割的示例链接:NiftyNet BRATS17 Demos。
项目快速启动
环境需求
- 推荐使用具有至少6GB内存的CUDA兼容GPU来训练模型。
- 对于仅测试模型的情况,可能不需要CUDA兼容GPU。
- TensorFlow版本需为v1.4.0或以上。
- NiftyNet版本需为v0.2.0或以上。
- 获取BraTS 2015或2017数据集,可以从官方网站下载。
快速运行步骤
-
安装依赖
安装TensorFlow和NiftyNet,遵循各自官网的安装指南。 -
准备数据
下载BraTS数据集,解压训练和测试文件,设置正确的数据路径。 -
使用预训练模型
- 分割BraTS 2015数据:
python test.py config15/test_all_class.txt - 分割BraTS 2017数据:
python test.py config17/test_all_class.txt
- 分割BraTS 2015数据:
应用案例与最佳实践
- 在实际应用中,可以直接利用提供的预训练模型进行脑肿瘤的自动分割,减少放射科医生的工作量。
- 调整配置文件(
config15/或config17/下的txt文件)以应对特定的分析需求,如调整模型参数或选择不同的视图方向进行训练。 - 利用
util/rename_variables.py脚本,可以跨视图共享权重加速训练过程,这是最佳实践中提高效率的一种策略。
典型生态项目
虽然此项目本身构建了一个自包含的解决方案,但其生态的一部分也包括了NiftyNet平台的其他贡献。开发者和研究人员可以在NiftyNet上找到更多的模型和工具,这些资源支持医学影像处理的广泛场景,包括但不限于更多的医学图像分割任务、配准等,形成一个更加庞大的生态系统,促进了医疗影像AI的发展。
以上是关于“布局与分割:脑肿瘤分割框架”的简要介绍与快速入门指南,通过这些步骤,您可以快速开始对脑肿瘤数据进行分割研究。记住,在使用项目中的任何资源时,应当恰当引用相关的学术文献。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143