Ollama-Python工具调用功能解析:如何正确使用Chat方法调用自定义函数
2025-05-30 00:58:50作者:邬祺芯Juliet
在Ollama-Python项目开发过程中,工具调用(Tool Calling)是一个非常有价值的功能,它允许语言模型与外部函数进行交互。本文将通过一个典型问题案例,深入分析工具调用的正确使用方法。
问题现象分析
开发者在使用ollama-python的chat方法时,遇到了"NameError: name 'add_two_numbers' is not defined"的错误。这表明系统无法识别开发者想要使用的工具函数。这种情况通常发生在函数定义缺失或作用域不正确的情况下。
工具调用的完整实现方案
要实现成功的工具调用,需要以下几个关键步骤:
- 函数定义:首先必须明确定义要调用的工具函数。这个定义需要包含完整的类型注解和文档字符串,因为语言模型会依赖这些信息来理解函数的用途和参数。
def add_two_numbers(a: int, b: int) -> int:
"""
计算两个整数的和
参数:
a (int): 第一个加数
b (int): 第二个加数
返回:
int: 两个数的和
"""
return int(a) + int(b)
- 函数注册:需要创建一个函数字典,将函数名称映射到实际的函数对象。这一步确保了当模型返回工具调用请求时,系统能找到对应的函数实现。
functions = {"add_two_numbers": add_two_numbers}
- 对话初始化:设置初始对话消息,明确用户的问题或指令。
messages = [{"role": "user", "content": "3加1等于多少?"}]
- 工具调用:在chat方法中正确指定工具列表,这里需要传入函数对象本身而非字符串。
response = chat(
"llama3.2",
messages=messages,
tools=[add_two_numbers],
options={"temperature": 0}
)
错误处理与结果处理
完整的实现还需要包含对工具调用结果的后续处理:
if response.message.tool_calls:
for tool in response.message.tool_calls:
if function_to_call := functions.get(tool.function.name):
output = function_to_call(**tool.function.arguments)
# 将函数结果返回给模型进行后续处理
messages.append(response.message)
messages.append(
{"role": "tool", "content": str(output), "name": tool.function.name}
)
final_response = chat("llama3.2", messages=messages)
最佳实践建议
-
完整的类型注解:确保所有工具函数都有完整的类型提示,这有助于模型正确理解参数类型。
-
清晰的文档字符串:文档字符串应准确描述函数功能、参数和返回值。
-
错误处理:实现健壮的错误处理逻辑,处理模型可能返回的无效函数调用请求。
-
结果验证:对工具调用的结果进行验证后再返回给模型,确保数据质量。
通过以上步骤和注意事项,开发者可以充分利用Ollama-Python的工具调用功能,实现更复杂的AI应用场景。这个功能特别适合需要结合外部计算或数据查询的AI应用开发。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60