Ollama-Python工具调用功能解析:如何正确使用Chat方法调用自定义函数
2025-05-30 07:44:59作者:邬祺芯Juliet
在Ollama-Python项目开发过程中,工具调用(Tool Calling)是一个非常有价值的功能,它允许语言模型与外部函数进行交互。本文将通过一个典型问题案例,深入分析工具调用的正确使用方法。
问题现象分析
开发者在使用ollama-python的chat方法时,遇到了"NameError: name 'add_two_numbers' is not defined"的错误。这表明系统无法识别开发者想要使用的工具函数。这种情况通常发生在函数定义缺失或作用域不正确的情况下。
工具调用的完整实现方案
要实现成功的工具调用,需要以下几个关键步骤:
- 函数定义:首先必须明确定义要调用的工具函数。这个定义需要包含完整的类型注解和文档字符串,因为语言模型会依赖这些信息来理解函数的用途和参数。
def add_two_numbers(a: int, b: int) -> int:
"""
计算两个整数的和
参数:
a (int): 第一个加数
b (int): 第二个加数
返回:
int: 两个数的和
"""
return int(a) + int(b)
- 函数注册:需要创建一个函数字典,将函数名称映射到实际的函数对象。这一步确保了当模型返回工具调用请求时,系统能找到对应的函数实现。
functions = {"add_two_numbers": add_two_numbers}
- 对话初始化:设置初始对话消息,明确用户的问题或指令。
messages = [{"role": "user", "content": "3加1等于多少?"}]
- 工具调用:在chat方法中正确指定工具列表,这里需要传入函数对象本身而非字符串。
response = chat(
"llama3.2",
messages=messages,
tools=[add_two_numbers],
options={"temperature": 0}
)
错误处理与结果处理
完整的实现还需要包含对工具调用结果的后续处理:
if response.message.tool_calls:
for tool in response.message.tool_calls:
if function_to_call := functions.get(tool.function.name):
output = function_to_call(**tool.function.arguments)
# 将函数结果返回给模型进行后续处理
messages.append(response.message)
messages.append(
{"role": "tool", "content": str(output), "name": tool.function.name}
)
final_response = chat("llama3.2", messages=messages)
最佳实践建议
-
完整的类型注解:确保所有工具函数都有完整的类型提示,这有助于模型正确理解参数类型。
-
清晰的文档字符串:文档字符串应准确描述函数功能、参数和返回值。
-
错误处理:实现健壮的错误处理逻辑,处理模型可能返回的无效函数调用请求。
-
结果验证:对工具调用的结果进行验证后再返回给模型,确保数据质量。
通过以上步骤和注意事项,开发者可以充分利用Ollama-Python的工具调用功能,实现更复杂的AI应用场景。这个功能特别适合需要结合外部计算或数据查询的AI应用开发。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39