scVI-Tools 开源项目教程
2024-08-21 07:53:03作者:柏廷章Berta
项目介绍
scVI-Tools (Single Cell Variational Inference Tools) 是一个强大的单细胞基因表达数据分析框架,由Scverse社区维护。它利用变分推断方法,提供了一套高效且用户友好的工具,用于处理单细胞RNA测序数据(scRNA-seq)。scVI不仅支持基础的数据可视化、降维分析,还能够进行无监督学习,识别细胞类型,以及跨样本比较等复杂任务,极大地促进了单细胞转录组学研究的进展。
项目快速启动
要开始使用scVI-Tools,首先确保你的Python环境已配置完毕,推荐使用Anaconda或Miniconda来管理环境。接下来,通过pip安装scVI-Tools:
pip install scvi-tools
示例代码快速入门
以下是一个简单的示例,演示如何加载数据并执行基本的scVI建模流程:
import scanpy as sc
from scvi.dataset import download_dataset, read_10x_genomics
from scvi.model import SCVI
# 加载预处理的10x Genomics数据集
adata = read_10x_genomics("path/to/your/download/directory", "pbmc3k")
# 初始化并训练SCVI模型
model = SCVI(adata)
model.train(max_epochs=50)
# 进行降维
latent_representation = model.get_latent_representation()
# 可视化降维结果
sc.pl.tsne(adata, color=["louvain"], legend_loc="right margin")
请记得将 "path/to/your/download/directory" 替换为你实际的数据下载路径。
应用案例和最佳实践
scVI-Tools在多种生物学研究中被广泛运用,包括但不限于细胞类型注释、异质性分析和跨实验数据对齐。一个最佳实践是利用scVI进行细胞类型的无监督聚类:
-
训练完SCVI模型后,通过模型得到的潜在表示可以用于Louvain聚类。
-
利用Scanpy库中的聚类功能,例如:
sc.tl.louvain(adata, use_rep='X_scvi') -
接着,你可以使用已知标记基因验证聚类结果,进一步探索各细胞群的生物特性。
典型生态项目
Scverse生态系统不仅仅包括scVI-Tools,还有其他几个核心组件如anndata、scanpy等,它们共同构成了单细胞数据分析的强大工具链。例如:
- Anndata: 提供了用于存储和操作单细胞数据结构的基础库。
- Scanpy: 高级分析工作流库,与scVI紧密结合,提供了丰富的可视化和分析函数。
结合这些工具,研究者能够实现从数据清洗、标准化到深入的机器学习分析,以及最终的生物学结论提取的全链条分析过程。
以上就是scVI-Tools的基本使用教程概览,更多高级特性和详细指南请参考项目官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
452
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705