细胞空间定位(cell2location):基于单细胞与空间转录组学的组织细胞结构全面映射
项目介绍
细胞空间定位(cell2location) 是一个基于贝叶斯模型的开源工具,旨在高灵敏度和分辨率下解析空间转录组数据中的精细细胞类型,并构建多样组织的综合细胞图谱。该模型考虑了技术性变异源并跨位置借用统计强度,支持单细胞转录组与空间转录组数据的集成,超越现有工具的表现。开发者需引用其论文 Kleshchevnikov et al., Nat Biotechnol, 2022,以承认其贡献。
项目快速启动
环境配置
首先,创建一个名为 cell2loc_env
的专用 Conda 环境,并安装必要的依赖:
conda create -y -n cell2loc_env python=3.9
conda activate cell2loc_env
pip install cell2location[tutorials]
然后,为了在 Jupyter Notebook 中使用这个环境,添加一个新的内核:
python -m ipykernel install --user --name=cell2loc_env --display-name='环境 (cell2loc_env)'
如果不需要 Conda,先安装 Miniconda 并遵循类似的步骤。
快速启动代码示例
对于具体的使用流程,参考其官方教程或运行以下命令尝试在 Google Colab 上的教程:
[](https://cell2location.readthedocs.io/en/latest/)
应用案例和最佳实践
在分析人类淋巴结等复杂组织时,cell2location 显示出了强大的能力,能够将细胞类型映射到 Visium 数据上。通过整合单细胞转录组得到的细胞类型参照标志物与空间转录组数据,cell2location 分解空间位置上的多细胞RNA计数矩阵,建立详细的细胞类型空间分布。最佳实践中,应特别注意调整N_cells_per_location
和detection_alpha
这两个超参数来适应不同的技术变异性。
典型生态项目
cell2location 作为一个核心组件,可以与其他生物信息学工具如 scVI-tools 和 Visium 数据分析紧密合作。它设计上具有通用性,利用Pyro和scVI-tools框架,不仅可以用于空间映射,还可以估计细胞类型的参照特征及后续数据分析。社区在 scverse discourse
上活跃,为用户提供了一个交流经验、分享案例和实践操作的最佳平台。在开发新模型或进行扩展时,用户可探索如何结合细胞类型层次信息或利用新的技术特性,如【CAR】空间接近度建模,进一步增强分析能力。
此文档提供了一个关于如何开始使用 cell2location 的简要指南,深入学习和高级功能请参考其详细文档和社区资源。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









