TensorFlow GNN:构建图神经网络的强大工具
2024-09-20 02:27:10作者:卓艾滢Kingsley
项目介绍
TensorFlow GNN 是一个在 TensorFlow 平台上构建图神经网络(Graph Neural Networks, GNN)的开源库。它提供了一系列工具和组件,帮助开发者轻松地处理图数据,构建和训练复杂的图神经网络模型。无论是处理同构图还是异构图,TensorFlow GNN 都能提供强大的支持。
项目技术分析
TensorFlow GNN 的核心技术包括:
- GraphTensor:一种用于表示图数据的类型,支持异构图(即包含多种类型的节点和边)。这种类型使得图数据的处理更加灵活和高效。
- 数据准备工具:包括图采样器,能够将庞大的图数据库转换为适合训练和推理的子图流。这对于处理大规模图数据尤为重要。
- 预构建模型和 Keras 层:提供了一系列现成的模型和 Keras 层,方便开发者快速构建自定义的 GNN 模型。
- 高层次 API:用于训练流程的编排,简化了模型的训练过程。
项目及技术应用场景
TensorFlow GNN 的应用场景非常广泛,包括但不限于:
- 分子图分类:在化学和生物信息学领域,用于分子图的分类和预测。
- 社交网络分析:在社交网络中,用于节点分类、链接预测等任务。
- 推荐系统:在推荐系统中,用于用户和物品的图表示学习,提升推荐效果。
- 路径预测:在交通网络和物流领域,用于预测最短路径等任务。
项目特点
- 强大的图表示能力:支持异构图的表示,适用于多种复杂的图数据结构。
- 高效的数据处理:通过图采样器,能够高效处理大规模图数据,适用于分布式训练。
- 丰富的模型库:提供多种预构建的模型和 Keras 层,方便开发者快速上手。
- 灵活的训练流程:通过高层次 API,简化了模型的训练和部署流程。
快速开始
你可以通过 Google Colab 快速体验 TensorFlow GNN 的功能,无需安装任何软件:
- 分子图分类:使用 MUTAG 数据集进行分子图分类。
- OGBN-MAG 端到端训练:在 OGBN-MAG 基准数据集上训练模型。
- 最短路径学习:使用 GraphNetworks 预测最短路径。
安装指南
你可以通过以下命令安装最新版本的 TensorFlow GNN:
pip install tensorflow-gnn
详细的安装指南和开发者文档,请参考 开发者指南。
引用
如果你在研究中使用了 TensorFlow GNN,请引用以下论文:
@article{tfgnn,
author = {Oleksandr Ferludin and Arno Eigenwillig and Martin Blais and
Dustin Zelle and Jan Pfeifer and Alvaro Sanchez{-}Gonzalez and
Wai Lok Sibon Li and Sami Abu{-}El{-}Haija and Peter Battaglia and
Neslihan Bulut and Jonathan Halcrow and
Filipe Miguel Gon{\c{c}}alves de Almeida and Pedro Gonnet and
Liangze Jiang and Parth Kothari and Silvio Lattanzi and
Andr{\'{e}} Linhares and Brandon Mayer and Vahab Mirrokni and
John Palowitch and Mihir Paradkar and Jennifer She and
Anton Tsitsulin and Kevin Villela and Lisa Wang and David Wong and
Bryan Perozzi},
title = {{TF-GNN:} Graph Neural Networks in TensorFlow},
journal = {CoRR},
volume = {abs/2207.03522},
year = {2023},
url = {http://arxiv.org/abs/2207.03522},
}
TensorFlow GNN 是一个功能强大且易于使用的工具,无论你是图神经网络的初学者还是资深研究者,都能从中受益。立即尝试,开启你的图神经网络之旅!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896