TensorFlow GNN:构建图神经网络的强大工具
2024-09-20 00:16:23作者:卓艾滢Kingsley
项目介绍
TensorFlow GNN 是一个在 TensorFlow 平台上构建图神经网络(Graph Neural Networks, GNN)的开源库。它提供了一系列工具和组件,帮助开发者轻松地处理图数据,构建和训练复杂的图神经网络模型。无论是处理同构图还是异构图,TensorFlow GNN 都能提供强大的支持。
项目技术分析
TensorFlow GNN 的核心技术包括:
- GraphTensor:一种用于表示图数据的类型,支持异构图(即包含多种类型的节点和边)。这种类型使得图数据的处理更加灵活和高效。
- 数据准备工具:包括图采样器,能够将庞大的图数据库转换为适合训练和推理的子图流。这对于处理大规模图数据尤为重要。
- 预构建模型和 Keras 层:提供了一系列现成的模型和 Keras 层,方便开发者快速构建自定义的 GNN 模型。
- 高层次 API:用于训练流程的编排,简化了模型的训练过程。
项目及技术应用场景
TensorFlow GNN 的应用场景非常广泛,包括但不限于:
- 分子图分类:在化学和生物信息学领域,用于分子图的分类和预测。
- 社交网络分析:在社交网络中,用于节点分类、链接预测等任务。
- 推荐系统:在推荐系统中,用于用户和物品的图表示学习,提升推荐效果。
- 路径预测:在交通网络和物流领域,用于预测最短路径等任务。
项目特点
- 强大的图表示能力:支持异构图的表示,适用于多种复杂的图数据结构。
- 高效的数据处理:通过图采样器,能够高效处理大规模图数据,适用于分布式训练。
- 丰富的模型库:提供多种预构建的模型和 Keras 层,方便开发者快速上手。
- 灵活的训练流程:通过高层次 API,简化了模型的训练和部署流程。
快速开始
你可以通过 Google Colab 快速体验 TensorFlow GNN 的功能,无需安装任何软件:
- 分子图分类:使用 MUTAG 数据集进行分子图分类。
- OGBN-MAG 端到端训练:在 OGBN-MAG 基准数据集上训练模型。
- 最短路径学习:使用 GraphNetworks 预测最短路径。
安装指南
你可以通过以下命令安装最新版本的 TensorFlow GNN:
pip install tensorflow-gnn
详细的安装指南和开发者文档,请参考 开发者指南。
引用
如果你在研究中使用了 TensorFlow GNN,请引用以下论文:
@article{tfgnn,
author = {Oleksandr Ferludin and Arno Eigenwillig and Martin Blais and
Dustin Zelle and Jan Pfeifer and Alvaro Sanchez{-}Gonzalez and
Wai Lok Sibon Li and Sami Abu{-}El{-}Haija and Peter Battaglia and
Neslihan Bulut and Jonathan Halcrow and
Filipe Miguel Gon{\c{c}}alves de Almeida and Pedro Gonnet and
Liangze Jiang and Parth Kothari and Silvio Lattanzi and
Andr{\'{e}} Linhares and Brandon Mayer and Vahab Mirrokni and
John Palowitch and Mihir Paradkar and Jennifer She and
Anton Tsitsulin and Kevin Villela and Lisa Wang and David Wong and
Bryan Perozzi},
title = {{TF-GNN:} Graph Neural Networks in TensorFlow},
journal = {CoRR},
volume = {abs/2207.03522},
year = {2023},
url = {http://arxiv.org/abs/2207.03522},
}
TensorFlow GNN 是一个功能强大且易于使用的工具,无论你是图神经网络的初学者还是资深研究者,都能从中受益。立即尝试,开启你的图神经网络之旅!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
188
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692