LMDeploy项目中VLM模型图像填充标记的优化实践
背景介绍
在多模态大模型(Large Multimodal Models)领域,视觉语言模型(Vision-Language Models, VLM)需要同时处理文本和图像输入。在模型推理过程中,图像数据通常会被转换为特定格式的token序列,其中填充(padding)操作是确保输入长度一致的重要步骤。然而,LMDeploy项目在处理某些VLM模型时,存在图像填充标记(image pad token)使用不当的问题。
问题分析
在LMDeploy的早期实现中,所有VLM模型默认使用pad_token_id作为图像的填充标记。这种做法对于大多数模型是可行的,但对于Qwen2-VL等特定模型却存在问题。通过分析Qwen2-VL的配置文件可以发现:
- 文本填充标记(pad_token_id)为151643
- 而图像填充标记(image_token_id)实际上是151655
这种差异会导致模型处理图像输入时产生不一致的结果。当使用transformers库直接推理时,图像填充标记被正确识别为151655;而使用LMDeploy时却被错误地设置为151643。
技术解决方案
针对这一问题,技术团队提出了分层解决方案:
-
基础类优化:在基础VLM模型类中保留默认实现,即使用
pad_token_id作为通用解决方案 -
特定模型适配:对于特殊模型如Qwen2-VL,通过重写
get_pad_token_id方法实现定制化处理 -
预处理构建改进:在构建预处理器的过程中,从处理器(processor)而非分词器(tokenizer)直接获取图像标记信息
以Qwen2-VL为例,其实现要点包括:
- 通过AutoProcessor加载预处理器
- 从processor中获取image_token信息
- 使用tokenizer将image_token转换为对应的token ID
实现细节
在具体实现上,可以参考Gemma3-VL的处理方式,该模型已经采用了更合理的实现方案。对于Qwen2-VL,需要特别注意其图像标记存储在processor而非tokenizer中的特性。
实现代码的核心逻辑包括:
- 初始化处理器并获取图像标记字符串
- 通过分词器将标记字符串转换为token ID
- 确保该ID被正确用于后续的图像填充操作
实践意义
这一优化对于确保VLM模型在多模态任务中的表现至关重要:
- 准确性保障:正确的填充标记使用可以避免模型对输入数据的误解
- 兼容性提升:使LMDeploy的行为与原生transformers实现保持一致
- 扩展性增强:为未来支持更多特殊VLM模型建立了良好的框架
总结
在部署多模态大模型时,细节处理往往决定成败。LMDeploy项目通过对图像填充标记的精细化处理,展现了工程实现中对模型特性的尊重和适配。这种针对不同模型特点进行定制化优化的思路,值得在更多模型部署场景中借鉴和应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00