LMDeploy项目中VLM模型图像填充标记的优化实践
背景介绍
在多模态大模型(Large Multimodal Models)领域,视觉语言模型(Vision-Language Models, VLM)需要同时处理文本和图像输入。在模型推理过程中,图像数据通常会被转换为特定格式的token序列,其中填充(padding)操作是确保输入长度一致的重要步骤。然而,LMDeploy项目在处理某些VLM模型时,存在图像填充标记(image pad token)使用不当的问题。
问题分析
在LMDeploy的早期实现中,所有VLM模型默认使用pad_token_id
作为图像的填充标记。这种做法对于大多数模型是可行的,但对于Qwen2-VL等特定模型却存在问题。通过分析Qwen2-VL的配置文件可以发现:
- 文本填充标记(pad_token_id)为151643
- 而图像填充标记(image_token_id)实际上是151655
这种差异会导致模型处理图像输入时产生不一致的结果。当使用transformers库直接推理时,图像填充标记被正确识别为151655;而使用LMDeploy时却被错误地设置为151643。
技术解决方案
针对这一问题,技术团队提出了分层解决方案:
-
基础类优化:在基础VLM模型类中保留默认实现,即使用
pad_token_id
作为通用解决方案 -
特定模型适配:对于特殊模型如Qwen2-VL,通过重写
get_pad_token_id
方法实现定制化处理 -
预处理构建改进:在构建预处理器的过程中,从处理器(processor)而非分词器(tokenizer)直接获取图像标记信息
以Qwen2-VL为例,其实现要点包括:
- 通过AutoProcessor加载预处理器
- 从processor中获取image_token信息
- 使用tokenizer将image_token转换为对应的token ID
实现细节
在具体实现上,可以参考Gemma3-VL的处理方式,该模型已经采用了更合理的实现方案。对于Qwen2-VL,需要特别注意其图像标记存储在processor而非tokenizer中的特性。
实现代码的核心逻辑包括:
- 初始化处理器并获取图像标记字符串
- 通过分词器将标记字符串转换为token ID
- 确保该ID被正确用于后续的图像填充操作
实践意义
这一优化对于确保VLM模型在多模态任务中的表现至关重要:
- 准确性保障:正确的填充标记使用可以避免模型对输入数据的误解
- 兼容性提升:使LMDeploy的行为与原生transformers实现保持一致
- 扩展性增强:为未来支持更多特殊VLM模型建立了良好的框架
总结
在部署多模态大模型时,细节处理往往决定成败。LMDeploy项目通过对图像填充标记的精细化处理,展现了工程实现中对模型特性的尊重和适配。这种针对不同模型特点进行定制化优化的思路,值得在更多模型部署场景中借鉴和应用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









