LMDeploy部署Qwen2-VL模型时的维度匹配问题解析
2025-06-04 10:04:43作者:吴年前Myrtle
问题背景
在使用LMDeploy工具部署Qwen2-VL多模态大模型时,开发者遇到了一个维度不匹配的错误。这个问题特别出现在使用lmdeploy+dlinfer-ascend的部署方式时,而之前不使用这种方式运行时则不会出现该错误。
错误现象
核心错误发生在模型的旋转位置编码(Rotary Position Embedding)计算部分,具体是在执行矩阵乘法操作时出现了维度不匹配的问题。错误日志显示:
inv_freq_expanded = inv_freq.view(1, -1, 1)
position_ids_expanded = position_ids.unsqueeze(1)
tmp = torch.bmm(inv_freq_expanded, position_ids_expanded)
同时系统抛出了Unsupported: 'skip function info in file...'的异常,表明在模型推理过程中某些操作不被支持。
问题根源分析
经过深入排查,发现问题源于LMDeploy默认安装路径(/opt/lmdeploy)下的代码与官方仓库中的代码存在差异。具体来说:
- 代码版本不一致:安装包中的代码可能不是最新版本,缺少对Qwen2-VL模型的某些适配修改
- 旋转位置编码实现:不同版本中对旋转位置编码的计算方式可能有细微差别
- Ascend后端适配:使用dlinfer-ascend后端时,对模型前向传播的实现要求更严格
解决方案
开发者通过以下步骤解决了该问题:
- 对比
/opt/lmdeploy下的代码与官方仓库代码 - 识别出旋转位置编码计算相关的差异点
- 将官方仓库中的最新实现应用到本地环境
- 确保所有维度变换操作与模型预期一致
技术要点
-
旋转位置编码的重要性:在现代大语言模型中,旋转位置编码(RoPE)是处理序列位置信息的关键技术,任何计算错误都会导致模型性能下降或完全失效
-
部署环境一致性:在使用LMDeploy等部署工具时,确保本地代码与官方仓库同步非常重要,特别是对于新发布的模型如Qwen2-VL
-
多模态模型特殊性:Qwen2-VL作为视觉-语言多模态模型,其位置编码处理可能比纯文本模型更复杂,需要特别注意
最佳实践建议
- 在部署新模型时,始终检查工具链的版本兼容性
- 对于关键组件如位置编码,可以添加额外的维度检查断言
- 考虑建立自动化测试流程,验证模型各部分的输入输出维度
- 保持部署环境与开发环境的一致性,避免"在我机器上能运行"的问题
总结
这次问题解决过程强调了在模型部署中代码一致性的重要性,特别是对于复杂的多模态模型。开发者通过代码比对找到了解决方案,这一经验也适用于其他类似场景。对于使用LMDeploy部署Qwen2-VL或其他大模型的开发者,建议定期同步官方代码更新,并在遇到维度相关错误时首先检查实现细节的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218