Amazon Employee Access Challenge 项目教程
2024-09-23 15:03:33作者:尤峻淳Whitney
1. 项目目录结构及介绍
amazonaccess/
├── BSMan/
│ ├── cache/
│ ├── combine/
│ ├── data/
│ ├── external/
│ ├── helpers/
│ ├── plots/
│ ├── submissions/
│ ├── gitignore
│ ├── MIT-LICENSE
│ ├── README.md
│ ├── classifier.py
│ ├── history.log
│ └── saved_params.json
├── README.md
├── MIT-LICENSE
└── classifier.py
目录结构介绍
-
BSMan/: 包含Benjamin Solecki的代码,需要单独运行。
- cache/: 缓存文件目录。
- combine/: 数据合并相关文件。
- data/: 数据文件目录。
- external/: 外部代码文件。
- helpers/: 辅助函数文件。
- plots/: 绘图文件目录。
- submissions/: 提交文件目录。
- gitignore: Git忽略文件。
- MIT-LICENSE: 项目许可证。
- README.md: 项目说明文件。
- classifier.py: 分类器脚本。
- history.log: 历史记录文件。
- saved_params.json: 保存的参数文件。
-
README.md: 项目说明文件。
-
MIT-LICENSE: 项目许可证。
-
classifier.py: 分类器脚本。
2. 项目启动文件介绍
classifier.py
这是项目的主要启动文件,用于生成预测并进行模型训练。可以通过命令行参数来控制脚本的行为。
使用方法
python classifier.py [-h] [-d] [-i ITER] [-f OUTPUTFILE] [-g] [-m] [-n] [-s] [-v] [-w]
参数说明
-h, --help: 显示帮助信息并退出。-d, --diagnostics: 计算诊断信息。-i ITER, --iter ITER: 迭代次数,用于平均计算。-f OUTPUTFILE, --outputfile OUTPUTFILE: 预测结果保存的文件名。-g, --grid-search: 使用网格搜索来寻找最佳参数。-m, --model-selection: 使用模型选择。-n, --no-cache: 不使用缓存。-s, --stack: 使用堆叠。-v, --verbose: 显示计算步骤。-w, --fwls: 使用元特征。
BSMan/logistic.py 和 BSMan/ensemble.py
这两个文件是Benjamin Solecki的模型代码,需要单独运行。
使用方法
# 在BSMan/目录下运行
python logistic.py log 75
python ensemble.py
3. 项目配置文件介绍
saved_params.json
该文件保存了模型的参数配置,用于在不同运行之间保持一致性。
history.log
记录了项目的运行历史,包括每次运行的参数和结果。
README.md
项目的说明文件,包含了项目的概述、使用方法和依赖项等信息。
MIT-LICENSE
项目的许可证文件,说明项目的开源许可协议。
以上是Amazon Employee Access Challenge项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492